
The Official

Raspberry Pi
Beginner’s Guide
How to use your new computer

The O
ffi

cial Raspberry Pi Beginner’s G
uide

G
areth H

alfacree
5

th Edition Gareth Halfacree

5th Edition
Fully updated for
Raspberry Pi 5

The Official Raspberry Pi
Beginner’s Guide, 5th Edition

The Official Raspberry Pi Beginner’s Guide

by Gareth Halfacree

ISBN: 978-1-912047-26-0

Copyright © 2024 Gareth Halfacree

Printed in the United Kingdom

Published by Raspberry Pi, Ltd., Maurice Wilkes Building, St. John’s Innovation Park,

Cowley Road, Cambridge, CB4 0DS

Editors: Brian Jepson, Liz Upton

Interior Designer: Sara Parodi

Production: Nellie McKesson

Photographer: Brian O’Halloran

Illustrator: Sam Alder

Graphics Editor: Natalie Turner

Publishing Director: Brian Jepson

Head of Design: Jack Willis

CEO: Eben Upton

October 2023: Fifth Edition

November 2020: Fourth Edition

November 2019: Third Edition

June 2019: Second Edition

December 2018: First Edition

The publisher, and contributors accept no responsibility in respect of any omissions or

errors relating to goods, products or services referred to or advertised in this book.

Except where otherwise noted, the content of this book is licensed under a Creative

Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)

Table of Contents

v Welcome to the Official Raspberry Pi Beginner’s Guide
vii About the author

Chapter 1
1 Get to know your Raspberry Pi

Introducing your new credit-card-sized computer. Take a
guided tour of the Raspberry Pi, find out how it works,
and discover some of the amazing things you can do
with it.

Chapter 2
15 Getting started with your Raspberry Pi

Discover the essential items you’ll need for your Raspber-
ry Pi, and learn how to connect them all to get it set up
and working.

Chapter 3
31 Using your Raspberry Pi

Learn about the Raspberry Pi operating system.

Chapter 4
53 Programming with Scratch 3

Learn how to start coding using Scratch, a block-based
programming language.

Chapter 5
89 Programming with Python

Now you’ve got to grips with Scratch, we’ll show you how
to do text-based coding with Python.

Chapter 6
121 Physical computing with Scratch and Python

There’s more to coding than doing things on screen —
you can also control electronic components connected
to your Raspberry Pi’s GPIO pins.

The Official Raspberry Pi Beginner’s Guide, 5th Edition · iii

Chapter 7
155 Physical computing with the Sense HAT

As used on the International Space Station, the Sense
HAT is a multifunctional add-on board for Raspberry Pi,
equipped with sensors and an LED matrix display.

Chapter 8
201 Raspberry Pi Camera Modules

Connecting a Camera Module or HQ Camera to your
Raspberry Pi enables you to take high-resolution photos
and shoot videos, and create amazing computer vision
projects.

Chapter 9
219 Raspberry Pi Pico and Pico W

Raspberry Pi Pico and Pico W bring a whole new dimen-
sion to your physical computing projects.

Appendices

239 Appendix A
Install an operating system to a microSD card

245 Appendix B
Installing and uninstalling software

251 Appendix C
The command-line interface

259 Appendix D
Further reading

269 Appendix E
Raspberry Pi Configuration Tool

277 Appendix F
Raspberry Pi specifications

iv · Table of Contents

Welcome to the Official
Raspberry Pi Beginner’s Guide

We think you’re going to love your Raspberry Pi. Whichever model
you have — a standard Raspberry Pi board, the compact Raspberry
Pi Zero 2 W, or the Raspberry Pi 400 with integrated keyboard —
this affordable computer can be used to learn coding, build ro-
bots, and create all kinds of weird and wonderful projects.

Raspberry Pi is capable of doing all the things you’d expect from
a computer — everything from browsing the internet and playing
games, to watching movies and listening to music. But your Rasp-
berry Pi is much more than a modern computer.

With a Raspberry Pi you can get right into the heart of a computer.
You get to set up your own operating system, and can connect
wires and circuits directly to its GPIO pins. It was designed to
teach young people how to program in languages like Scratch and
Python, and all the major programming languages are included
with the official operating system. With Raspberry Pi Pico, you can
create unobtrusive, low-power projects that interact with the phys-
ical world.

The world needs programmers more than ever, and Raspberry Pi
has ignited a love of computer science and technology in a new
generation.

People of all ages use Raspberry Pi to create exciting projects:
everything from retro games consoles to internet-connected
weather stations.

So if you want to make games, build robots, or hack a variety of
amazing projects, then this book is here to help you get started.

You can find example code and other information about this book,
including errata, in its GitHub repository at rptl.io/bg-resources. If
you’ve found what you believe is a mistake or error in the book,
please let us know by using our errata submission form at rptl.io/
bg-errata.

The Official Raspberry Pi Beginner’s Guide, 5th Edition · v

http://rptl.io/bg-resources
http://rptl.io/bg-errata
http://rptl.io/bg-errata

vi · Welcome to the Official Raspberry Pi Beginner’s Guide

About the author

Gareth Halfacree is a freelance technology journalist, writer, and
former system administrator in the education sector. With a pas-
sion for open-source software and hardware, he was an early
adopter of the Raspberry Pi platform and has written several pub-
lications on its capabilities and flexibility. He can be found on
Mastodon as @ghalfacree@mastodon.social or via his website at
freelance.halfacree.co.uk.

Colophon

Raspberry Pi is an affordable way to do something useful, or to do
something fun.

Democratising technology — providing access to tools — has
been our motivation since the Raspberry Pi project began. By
driving down the cost of general-purpose computing to below $5,
we’ve opened up the ability for anybody to use computers in pro-
jects that used to require prohibitive amounts of capital. Today,
with barriers to entry being removed, we see Raspberry Pi com-
puters being used everywhere from interactive museum exhibits
and schools to national postal sorting offices and government
call centres. Kitchen table businesses all over the world have been
able to scale and find success in a way that just wasn’t possible in
a world where integrating technology meant spending large sums
on laptops and PCs.

Raspberry Pi removes the high entry cost to computing for people
across all demographics: while children can benefit from a com-
puting education that previously wasn’t open to them, many
adults have also historically been priced out of using computers
for enterprise, entertainment, and creativity. Raspberry Pi elimi-
nates those barriers.

The Official Raspberry Pi Beginner’s Guide, 5th Edition · vii

https://mastodon.social/@ghalfacree
http://freelance.halfacree.co.uk/

Raspberry Pi Press
store.rpipress.cc

Raspberry Pi Press is your essential bookshelf for computing,
gaming, and hands-on making. We are the publishing imprint of
Raspberry Pi Ltd, part of the Raspberry Pi Foundation. From build-
ing a PC to building a cabinet, discover your passion, learn new
skills, and make awesome stuff with our extensive range of books
and magazines.

The MagPi
magpi.raspberrypi.com

The MagPi is the official Raspberry Pi magazine. Written for the
Raspberry Pi community, it is packed with Pi-themed projects,
computing and electronics tutorials, how-to guides, and the latest
community news and events.

HackSpace
hackspace.raspberrypi.com

HackSpace magazine is filled with projects for fixers and tinkerers
of all abilities. We’ll teach you new techniques and give you
refreshers on familiar ones, from 3D printing, laser cutting, and
woodworking to electronics and the Internet of Things. Hack-
Space will inspire you to dream bigger and build better.

viii · Colophon

http://store.rpipress.cc/
http://magpi.raspberrypi.com/
http://hackspace.raspberrypi.com/

The Official Raspberry Pi Beginner’s Guide, 5th Edition · ix

Chapter 1

Get to know your Raspberry Pi
Introducing your new credit-card-sized computer. Take a guided
tour of the Raspberry Pi, find out how it works, and discover
some of the amazing things you can do with it.

Raspberry Pi is a remarkable device: a fully functional computer in a tiny, low-
cost package. Whether you’re looking for a device you can use to browse the
web or play games, are interested in learning how to write your own programs,
or are looking to create your own circuits and physical devices, Raspberry Pi —
and its amazing community — will support you every step of the way.

Raspberry Pi is known as a single-board computer, which means exactly what
it sounds like: it’s a computer, just like a desktop, laptop, or smartphone,
but built on a single printed circuit board. Like most single-board computers,
Raspberry Pi is small — it has roughly the same footprint as a credit card —
but that doesn’t mean it’s not powerful: a Raspberry Pi can do anything a big-
ger and more power-hungry computer can do, from browsing the web and
playing games to driving other devices.

The Raspberry Pi family was born from a desire to encourage more hands-
on computer education around the world. Its creators, who joined together
to form the non-profit Raspberry Pi Foundation, had little idea that it would
prove so popular: the few thousand built to test the waters in 2012 sold out
immediately, and more than fifty million have been shipped all over the world
in the years since. These boards have found their way into homes, classrooms,
offices, data centres, factories, and even self-piloting boats and satellites.

Various models of Raspberry Pi have been released since the original Model B,
each bringing either improved specifications or features specific to a particu-
lar use-case. The Raspberry Pi Zero family, for example, is a tiny version of the
full-size Raspberry Pi which drops a few features — in particular the multiple

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 1

USB ports and wired network port — in favour of a significantly smaller lay-
out and reduced power requirements.

All Raspberry Pi models have one thing in common, though: they’re compat-
ible, meaning that most software written for one model will run on any other
model. It’s even possible to take the very latest version of Raspberry Pi’s op-
erating system and run it on an original pre-launch Model B prototype. It will
run more slowly, it’s true, but it will still run.

Throughout this book you’ll learn about Raspberry Pi 4 Model B, Raspberry
Pi 5, Raspberry Pi 400, and Raspberry Pi Zero 2 W: the latest and most pow-
erful versions of Raspberry Pi. Everything you learn can be easily applied to
other models in the Raspberry Pi family, so don’t worry if you’re using a dif-
ferent model or revision.

A guided tour of Raspberry Pi
Unlike a traditional computer, which hides its inner workings in a case, a
standard Raspberry Pi has all its components, ports, and features out on
display — although you can buy a case to provide extra protection, if you’d
prefer. This makes it a great tool for learning about what the various parts of a
computer do, and also makes it easy to learn what goes where when it comes
time to plug in the various other pieces of hardware — known as peripherals —
you’ll need to get started.

Figure 1-1 shows a Raspberry Pi 5 from above. When you’re using a Raspber-
ry Pi with this book, try to keep it oriented the same way as in the pictures;
otherwise it can get confusing when it comes to using things like the GPIO
header (detailed in Chapter 6, Physical computing with Scratch and Python).

RASPBERRY PI 400

If you have a Raspberry Pi 400, the circuit board is built into the keyboard case. Read

on to learn about all the components that make Raspberry Pi tick, or skip to “Raspber-

ry Pi 400” on page 9 for a tour of your desktop device.

RASPBERRY PI ZERO 2 W

If you have a Raspberry Pi Zero 2 W, some of the ports and components look different

when compared to the Raspberry Pi 4 Model B. Read on to learn about what each

component does, or skip to “Raspberry Pi Zero 2 W” on page 11 to learn more about

your device.

?

?

2 · Chapter 1 · Get to know your Raspberry Pi

Figure 1-1 Raspberry Pi 5

While it may look like there’s an overwhelming amount packed into such a
tiny board, a Raspberry Pi is very simple to understand — starting with its
components, the inner workings that make the device tick.

A GPIO header

B Wireless

C RAM

D RP1 I/O controller chip

E Connector for fan

F USB 2.0

G USB 3.0

H Ethernet port

I Power-over-Ethernet (PoE) pins

J CSI/DSI camera/display port 0

K CSI/DSI camera/display port 1

L Micro HDMI 1

M Connector for UART serial port

N System-on-chip

O Micro HDMI 0

P Real-time clock battery header

Q USB Type-C power in

R Power button

S Connector for PCI Express (PCIe)

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 3

Figure 1-2
Raspberry Pi’s system-on-chip (SoC)

Figure 1-3
Raspberry Pi’s random access memory (RAM)

Raspberry Pi’s components
Like any computer, Raspberry Pi is made up of many components, each of
which has a role to play in making it work. The first, and arguably most im-
portant, of these can be found just to the left of the centre point of the board
(Figure 1-2), covered in a metal cap: this is the system-on-chip (SoC).

The name ‘system-on-chip’ is a great indicator of what you would find if you
prised the metal cover off: a silicon chip, known as an integrated circuit, that
contains the bulk of Raspberry Pi’s system. This integrated circuit includes a
central processing unit (CPU), commonly thought of as the ‘brain’ of a com-
puter, and a graphics processing unit (GPU), which handles the visual render-
ing and display output side of things.

A brain is no good without memory, however, and just above the SoC you’ll
find exactly that: a small, black, plastic-covered rectangular chip (Figure
1-3). This is Raspberry Pi’s random-access memory (RAM). When you’re work-
ing on Raspberry Pi, it’s the RAM that holds what you’re doing. Saving your
work moves this data to the more permanent storage of the microSD card. To-
gether, these components form Raspberry Pi’s volatile and non-volatile mem-
ory: the volatile RAM loses its contents whenever Raspberry Pi loses power,
while the non-volatile memory in the microSD card keeps its contents.

At the top left of the board you’ll find another metal lid (Figure 1-4) covering
the radio, the component that Raspberry Pi the ability to communicate with
devices wirelessly. In fact, the radio itself fills the role of two other common
components: a WiFi radio that connects to computer networks; and a Blue-
tooth radio that connects to peripherals like mice and sends or receives data
from nearby smart devices like sensors or smartphones.

Another black, plastic-covered chip marked with the Raspberry Pi logo can
be found on the right side of the board, near the USB ports (Figure 1-5). This

4 · Chapter 1 · Get to know your Raspberry Pi

Figure 1-4
Raspberry Pi’s radio module

Figure 1-5
Raspberry Pi’s RP1 controller chip

is RP1, a custom I/O controller chip which communicates with the four USB
ports, the Ethernet port, and most low-speed interfaces to other hardware.

Another black chip, smaller than the rest, can be found a little bit above the
USB C power connector at the bottom left of the board (Figure 1-6). This is
known as a power management integrated circuit (PMIC); it takes the power
that comes in from the USB C port and turns it into the power your Raspberry
Pi needs to run.

The final black chip, below RP1 and positioned at a jaunty angle, helps the
RP1 in handling Raspberry Pi’s Ethernet port. It provides what is known as an
Ethernet PHY, providing the physical interface which sits between the Ether-
net port itself and the Ethernet controller in the RP1 chip.

Figure 1-6
Raspberry Pi’s power management integrated
circuit (PMIC)

Don’t worry if this seems like a lot to take in: you don’t need to know what each
component is or where to find it on the board in order to use Raspberry Pi.

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 5

Figure 1-7
Raspberry Pi’s USB ports

Figure 1-8
Raspberry Pi’s Ethernet port

Raspberry Pi’s ports
Raspberry Pi has a range of ports, starting with four Universal Serial Bus
(USB) ports (Figure 1-7) at the middle and top of its right-hand edge. These
ports let you connect any USB-compatible peripheral — like keyboards, mice,
digital cameras, and flash drives — to your Raspberry Pi. Speaking technical-
ly, there are two types of USB ports on Raspberry Pi, each relating to a differ-
ent Universal Serial Bus standard: the ones with black plastic inside are USB
2.0 ports and the ones with blue plastic are newer and faster USB 3.0 ports.

Next to the USB ports is an Ethernet port, also known as a network port (Fig-
ure 1-8). You can use this port to connect your Raspberry Pi to a wired com-
puter network with a cable that uses what is known as an RJ45 connector.
If you look closely at the Ethernet port, you’ll see two light-emitting diodes
(LEDs) at the bottom. These are status lights which, when lit or blinking, let
you know the connection is working.

Just to the left of the Ethernet port, on the bottom edge of Raspberry Pi,
is a Power-over-Ethernet (PoE) connector (Figure 1-9). This connector, when
paired with the Raspberry Pi 5 PoE+ HAT — Hardware Attached on Top, a spe-
cial add-on board designed for Raspberry Pi — and a suitable PoE-capable
network switch, lets you power Raspberry Pi from its Ethernet port without
having to connect anything to the USB Type-C connector. The same connec-
tor is also available on Raspberry Pi 4, though in a different location; Rasp-
berry Pi 4 and Raspberry Pi 5 use different HATs for PoE support.

Directly to the left of the PoE connector are a pair of strange-looking con-
nectors with plastic flaps you can pull up; these are the camera and display
connectors, also known as the Camera Serial Interface (CSI) and Display Serial
Interface(DSI) ports (Figure 1-10).

6 · Chapter 1 · Get to know your Raspberry Pi

Figure 1-9
Raspberry Pi’s Power-over-Ethernet connector

Figure 1-10
Raspberry Pi’s camera and display connectors

Figure 1-11
Raspberry Pi’s camera module

Figure 1-12
Raspberry Pi’s micro HDMI ports

You can use these connectors to connect a DSI-compatible display like the
Raspberry Pi Touchscreen Display or the specially designed Raspberry Pi
Camera Module family (see Figure 1-11). You’ll learn more about camera mod-
ules in Chapter 8, Raspberry Pi Camera Modules. Either port can act as a cam-
era input or display output so you can have two CSI cameras, two DSI
displays, or one CSI camera and one DSI display running on a single Raspber-
ry Pi 5.

To the left of the camera and display connectors, still on the bottom edge of
the board, are the micro High Definition Multimedia Interface (micro HDMI)
ports, which are smaller versions of the connectors you can find on a games
console, set-top box, or TV (Figure 1-12). The ‘multimedia’ part of its name
means that it carries both audio and video signals, while ‘high-definition’
means you can expect excellent quality from both signals. You’ll use these mi-
cro HDMI ports to connect Raspberry Pi to one or two display devices, such
as a computer monitor, TV, or projector.

Between the two micro HDMI ports is a small connector labelled ‘UART,’ which
provides access to a Universal Asynchronous Receiver-Transmitter (UART) ser-
ial port. You won’t use that port in this book, but you may need it in the future
for communicating with, or troubleshooting, more complex projects.

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 7

Figure 1-13
Raspberry Pi’s USB Type-C power port

Figure 1-14
Raspberry Pi’s connector for PCI Express.

To the left of the micro HDMI ports is another small connector labelled ‘BAT’,
where you can connect a small battery to keep Raspberry Pi’s real-time clock
(RTC) ticking, even when it’s disconnected from its power supply. You don’t
need to connect a battery to use Raspberry Pi, though, since it will automati-
cally update its clock when turned on, so long as it has access to the internet.

At the bottom left of the board is a USB C power port (Figure 1-13), used to
provide Raspberry Pi with power through a compatible USB C power supply.
The USB C port is a common sight on smartphones, tablets, and other portable
devices. While you could use a standard mobile charger to power your Rasp-
berry Pi, for best results you should use the official Raspberry Pi USB-C Power
Supply: it’s better at coping with the sudden changes in power requirements
that can occur when your Raspberry Pi is working particularly hard.

At the left edge of the board is a small button facing outwards. This is Rasp-
berry Pi 5’s new power button, used to safely shut down your Raspberry Pi
when you’re finished with it. This button is not available on Raspberry Pi 4, or
older boards.

Above the power button is another connector (Figure 1-14), which, at first
glance, looks like a smaller version of the CSI and DSI connectors. This al-
most-familiar connector connects to Raspberry Pi’s PCI Express (PCIe) bus:
a high-speed interface for add-on hardware like Solid State Disks (SSDs). To
use the PCIe bus, you’ll need the Raspberry Pi PCIe HAT add-on to convert
this compact connector to a more common M.2-standard PCIe slot. You don’t
need the HAT to make full use of Raspberry Pi, though, so feel free to ignore
this connector until you need it.

At the top edge of the board are 40 metal pins, split into two rows of 20 pins
(Figure 1-15). These pins make up the GPIO (general-purpose input/output)
header, an important feature of Raspberry Pi, that lets it talk to additional hard-
ware from LEDs and buttons all the way to temperature sensors, joysticks, and

8 · Chapter 1 · Get to know your Raspberry Pi

Figure 1-15
Raspberry Pi’s GPIO header

Figure 1-16
Raspberry Pi’s microSD card connector

pulse-rate monitors. You’ll learn more about the GPIO header in Chapter 6,
Physical computing with Scratch and Python.

There’s one final port on Raspberry Pi, but you won’t see it until you turn
the board over. Here on the underside of the board you’ll find a microSD
card connector positioned almost exactly underneath the top-side’s connec-
tor marked ‘PCIe’ (Figure 1-16). This connector is for Raspberry Pi’s storage
device: the microSD card inserted in here contains all the files you save, all
the software you install, and the operating system that makes your Raspberry
Pi run. It’s also possible to run your Raspberry Pi without a microSD card by
loading its software over the network, from a USB drive, or from an M.2 SSD.
For this book we’ll keep it simple and focus on using a microSD card as the
main storage device.

Raspberry Pi 400
Raspberry Pi 400 takes the same components as Raspberry Pi 4, including the
system-on-chip and memory, but places them inside a convenient keyboard
housing. As well as protecting the electronics, the keyboard housing takes up
less room on your desk and helps keep your cables tidy.

While you can’t easily see the internal components, you can see the external
bits and pieces, starting with the keyboard itself (Figure 1-17). In the upper
right corner are three light-emitting diodes (LEDs): the first lights up when
you press the Num Lock key, which switches some of the keys to act like the
ten-key number pad on a full-size keyboard; the second lights up when you
press Caps Lock, which makes the letter keys upper-case rather than lower-
case; and the last lights up when Raspberry Pi 400 is powered on.

At the back of Raspberry Pi 400 (Figure 1-18) are the ports. The left-most port
is the general-purpose input/output (GPIO) header. This is the same header
shown in Figure 1-15, but flipped: the first pin, Pin 1, is at the top-right, while

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 9

Figure 1-17 Raspberry Pi 400 has an integrated keyboard

the last pin, Pin 40, is at the bottom-left. You can find out more about the
GPIO header in Chapter 6, Physical computing with Scratch and Python.

Figure 1-18 The ports are found at the rear of Raspberry Pi 400

Next to the GPIO header is the microSD card slot. Like the slot on the under-
side of Raspberry Pi 5, this holds the microSD card that serves as storage for
Raspberry Pi 400’s operating system, applications, and other data. A microSD
card comes pre-installed in Raspberry Pi 400. To remove it push gently on the
card until it clicks and springs out, then pull the card the rest of the way out.
When you put the card back in, make sure the shiny metal contacts are facing
downwards. Push the card in gently until it clicks, which means it’s locked in-
to place.

The next two ports are the micro HDMI ports, used to connect a monitor, TV,
or other display. Like Raspberry Pi 4 and Raspberry Pi 5, Raspberry Pi 400

10 · Chapter 1 · Get to know your Raspberry Pi

supports up to two HDMI displays. Next to these is the USB C power port,
used to connect an official Raspberry Pi Power Supply, or any other compati-
ble USB C power supply.

The two blue ports are USB 3.0 ports, which provide a high-speed connection
to devices like solid-state drives (SSDs), memory sticks, printers, and more.
The white port to the right of these is a lower-speed USB 2.0 port, which you
can use for the Raspberry Pi Mouse included with the Raspberry Pi 400.

The final port is a gigabit Ethernet network port, used to connect Raspberry
Pi 400 to your network using an RJ45 cable as an alternative to using the de-
vice’s built-in WiFi radio. You can read more about connecting Raspberry Pi
400 to a network in Chapter 2, Getting started with your Raspberry Pi.

Raspberry Pi Zero 2 W
Raspberry Pi Zero 2 W (Figure 1-19) is designed to offer many of the same fea-
tures as the other models in the Raspberry Pi family, but in a much more com-
pact design. It’s cheaper and draws less power, but it also lacks a few ports
found on the larger models.

Figure 1-19 Raspberry Pi Zero 2 W

Unlike Raspberry Pi 5 and Raspberry Pi 400, Raspberry Pi Zero 2 W lacks a
wired Ethernet port. You can still connect it to a network, but only using a
WiFi connection. You’ll learn more about connecting Raspberry Pi Zero 2 W to
a network in Chapter 2, Getting started with your Raspberry Pi.

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 11

You should also notice a difference in the system-on-chip: it’s black instead of
silver and there’s no separate RAM chip visible. This is because the two parts —
SoC and RAM — are combined into one chip, marked with an etched Raspber-
ry Pi logo, and placed roughly in the middle of the board.

The far left of the board has the usual microSD card slot for storage, and be-
low that is a single mini HDMI port for video and audio. Unlike Raspberry Pi 5
and Raspberry Pi 400, Raspberry Pi Zero 2 W only supports a single display.

To the right are two micro-USB ports: the left-hand port, marked ‘USB’, is a
USB On-The-Go (OTG) port which is compatible with OTG adapters to con-
nect keyboards, mice, USB hubs, or other peripherals; the right-hand port,
marked ‘PWR IN’, is the power connector. You can’t use a power supply de-
signed for Raspberry Pi 4 or Raspberry Pi 400 with Raspberry Pi Zero 2 W,
since they use different connectors.

At the very right of the board is a Camera Serial Interface you can use to con-
nect a Raspberry Pi Camera Module. You’ll learn more about that in Chapter
8, Raspberry Pi Camera Modules.

Finally, Raspberry Pi Zero 2 W has the same 40-pin general-purpose input/
output (GPIO) header as its bigger siblings, but it’s supplied unpopulated. This
means it doesn’t have any pins fitted. If you want to use the GPIO header
you’ll need to solder a 2×20 2.54mm pin header in place — or purchase the
Raspberry Pi Zero 2 WH, which has a header already soldered into place.

12 · Chapter 1 · Get to know your Raspberry Pi

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 13

Chapter 2

Getting started with your
Raspberry Pi
Discover the essential items you’ll need for your Raspberry Pi,
and learn how to connect them all to get it set up and working.

Raspberry Pi is designed to be as quick and easy to set up and use as pos-
sible, but — like any computer — it relies on various external components
called peripherals. While it’s easy to take a look at the bare circuit board of
Raspberry Pi — which looks significantly different to the encased, closed-off
computers you may be used to — and worry that things are about to get com-
plicated, that’s not the case. You can be up and running with your Raspberry
Pi in well under ten minutes if you follow the steps in this guide.

If you received this book in a Raspberry Pi Desktop Kit or with a Raspberry
Pi 400, you’ll already have almost everything you need to get started. All you
need to provide is a computer monitor or a TV with an HDMI connection —
the same type of connector used by set-top boxes, Blu-ray players, and games
consoles — so you can see what your Raspberry Pi is doing.

If you picked up your Raspberry Pi without accessories, then you’ll also need:

▶ USB power supply — A 5V power supply rated at 5 amps (5A) and with
a USB C connector for Raspberry Pi 5, a 5V power supply rated at 3
amps (3A) and with a USB C connector for Raspberry Pi 4 Model B or
Raspberry Pi 400, or a 5V power supply rated at 2.5 amps (2.5A) and
with a micro USB connector for Raspberry Pi Zero 2 W. The Official
Raspberry Pi Power Supplies are recommended, as they are designed
to cope with the quickly switching power demands of Raspberry Pi.
Third-party power supplies may not be able to negotiate current, and
may cause power issues with your Raspberry Pi.

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 15

Figure 2-1
USB power supply

Figure 2-2
microSD card

▶ microSD card — The microSD card acts as your Raspberry Pi’s perma-
nent storage. All the files you create and all the software you install,
along with the operating system itself, are stored on the card. An 8GB
card is enough to get you started, though a 16GB one offers more room
to grow. The Raspberry Pi Desktop Kits includes a microSD card with
Raspberry Pi OS pre-installed; see Appendix A, Install an operating
system to a microSD card for instructions on installing an operating
system (OS) onto a blank card.

▶ USB keyboard and mouse — The keyboard and mouse allow you to
control your Raspberry Pi. Almost any wired or wireless keyboard and
mouse with a USB connector will work with Raspberry Pi, though
some gaming-style keyboards with colourful lights may draw too
much power to be used reliably. Raspberry Pi Zero 2 W needs a micro
USB OTG adapter, and if you want to plug in more than one USB de-
vice at a time you’ll need a powered USB hub.

▶ HDMI cable — This carries sound and images from your Raspberry Pi
to your TV or monitor. Raspberry Pi 4, Raspberry Pi 5, and Raspber-
ry Pi 400 need a cable with a micro HDMI connector at one end, while
Raspberry Pi Zero 2 W needs a cable with a mini HDMI connector; the
other end should have a full-size HDMI connector for your display.
You can also use a micro or mini HDMI-to-HDMI adapter along with
a standard, full-size HDMI cable. If you’re using a monitor without an
HDMI socket, you can buy adapters to convert to DVI-D, DisplayPort,
or VGA connectors.

16 · Chapter 2 · Getting started with your Raspberry Pi

Figure 2-3
USB keyboard

Figure 2-4
HDMI cable

Raspberry Pi is safe to use without a case, providing you don’t place it on a
metal surface, which could conduct electricity and cause a short-circuit. An
optional case, however, can provide additional protection; the Desktop Kit
includes the Official Raspberry Pi Case, while third-party cases are available
from all good stockists.

If you want to use Raspberry Pi 4, Raspberry Pi 5, or Raspberry Pi 400 on a
wired network, rather than a Wi-Fi network, you’ll also need an Ethernet net-
work cable. This should be connected at one end to your network’s switch
or router. If you’re planning to use Raspberry Pi’s built-in wireless radio, you
won’t need a cable; you will, however, need to know the name and key or
passphrase for your wireless network.

Setting up the hardware
Begin by unpacking your Raspberry Pi from its box. Raspberry Pi is a robust
piece of hardware, but that doesn’t mean it’s indestructible; try to get into the
habit of holding the board by the edges, rather than on its flat sides, and be
extra careful around the raised metal pins. If these pins are bent, at best it’ll
make using add-on boards and other extra hardware difficult and, at worst,
might cause a short-circuit that will damage your Raspberry Pi.

If you haven’t done so already, have a look at Chapter 1, Get to know your
Raspberry Pi, for details on exactly where the various ports are and what they
do.

RASPBERRY PI 400 SETUP

The following instructions are for setting up Raspberry Pi 5 or another bare-board

member of the Raspberry Pi family. For Raspberry Pi 400, see “Setting up Raspberry

Pi 400” on page 26.

?

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 17

Figure 2-5
The Raspberry Pi 5 placed in its case

Figure 2-6
Plugging in the fan connector

Assembling the Raspberry Pi Case
If you’re installing Raspberry Pi 5 in a case, this should be your first step. If
you’re using the Official Raspberry Pi Case, begin by splitting it into its three
individual pieces: the red base, fan assembly and frame, and white lid.

Take the base and hold it so that the raised end is to your left and the lower
end to your right.

Hold your Raspberry Pi 5, with no microSD card inserted, by its USB and Eth-
ernet ports, at a slight angle. Gently lower the other side down into the base,
so it looks like Figure 2-5. You should feel and hear a click as you seat it flat
against the base.

Next, plug the fan’s white JST connector into the fan socket on the Raspberry
Pi 5 as shown in Figure 2-6. It will only fit one way around, so you don’t need
to worry about connecting it backwards.

Click the fan assembly and frame into place as shown in Figure 2-7, and gen-
tly push down until you feel and hear a click.

If you want to cover everything in the case up, take the optional white lid and
position it so that the Raspberry Pi logo is over the USB and Ethernet connec-
tors on Raspberry Pi 5, as shown in Figure 2-8. To fasten it into place, gently
push down on the middle of the lid until you hear a click.

SETTING UP THE FAN ASSEMBLY

The fan should have arrived inserted into the fan assembly, and the fan assembly

should already be inserted into its frame when you take it out of the box. If not, you

can click it all together (see Figure 2-7).

?

18 · Chapter 2 · Getting started with your Raspberry Pi

Figure 2-7
Attaching the fan assembly and frame

Figure 2-8
Placing the lid on top of the case

Assembling the Raspberry Pi Zero Case
If you’re installing Raspberry Pi Zero 2 W in a case, this should be your first
step. If you’re using the Official Raspberry Pi Zero Case, begin by unpacking
it. You should have four pieces: a red base and three white lids.

If you’re using Raspberry Pi Zero 2, you want to use the solid lid. If you’re go-
ing to be using the GPIO header, about which you’ll learn more in Chapter
6, Physical computing with Scratch and Python, pick the lid with the long rec-
tangular hole in it. If you have a Camera Module 1 or 2, pick the lid with the
circular hole.

The Camera Module 3 and High Quality (HQ) Camera Module are not compat-
ible with the Raspberry Pi Zero Case camera lid and must be used outside the
case; there’s a cut-out at the end of the Raspberry Pi Zero Case for the camera
cable.

Take the base and place it flat on the table so that the cut-outs for the ports
are facing towards you as shown in Figure 2-9.

HATS AND LIDS

You can fit a HAT (Hardware Attached on Top) directly on top of Raspberry Pi 5 by re-

moving the fan assembly, or you can stack it on top of the fan assembly and frame

using 14mm high standoffs and a 19mm GPIO extender. These will be available sepa-

rately from Authorised Resellers.

?

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 19

Figure 2-9
The Raspberry Pi Zero case

Figure 2-10
Placing the Zero in its case

Holding your Raspberry Pi Zero (with the microSD card inserted) by the edges
of the board, line it up so the small circular posts in the corners of the base
go into the mounting holes on the corners of Raspberry Pi Zero 2 W’s circuit
board. When they’re lined up (Figure 2-10), gently push Raspberry Pi Zero 2
W downwards until you hear a click and the ports are lined up with the cut-
outs in the base.

Take your chosen white lid and place it on top of the Raspberry Pi Zero Case
base, as shown in Figure 2-11. If you’re using the Camera Module lid, make
sure that the cable isn’t trapped. When the lid is in place, gently push it down
until you hear a click.

At this point, you can also stick the included rubber feet to the bottom of
the case (see Figure 2-12): flip it over, peel the feet off the backing sheet, and
stick them in the circular indentations on the base to provide a better grip on
your desk.

CAMERA MODULE AND THE ZERO CASE

If you’re using a Raspberry Pi Camera Module, use the lid with the circular hole. Line

the Camera Module’s mounting holes up with the cross-shaped posts in the lid, so

that the camera’s connector is facing towards the logo on the lid. Click it into place.

Gently push the bar on the camera connector away from your Raspberry Pi, then push

the narrower end of the included camera ribbon cable into the connector before push-

ing the bar back into place. Connect the wider end of the cable to the Camera Module

in the same way. For more information on installing the Camera Module, see Chapter

8, Raspberry Pi Camera Modules.

?

20 · Chapter 2 · Getting started with your Raspberry Pi

Figure 2-11
Attaching the lid

Figure 2-12
Attaching the feet

Connecting the microSD card
To install the microSD card, which is Raspberry Pi’s storage, turn your Rasp-
berry Pi (in its case if you’re using one) upside-down and slide the card into
the microSD slot with the card’s label side facing away from Raspberry Pi. It
will only fit in one way, and should slide home without too much pressure (see
Figure 2-13).

The microSD card will slide into the connector, then stop without a click.

Figure 2-13 Inserting the microSD card

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 21

For Raspberry Pi Zero 2 W, the microSD slot is on the top at the left-hand side.
Insert the card with the label facing away from your Raspberry Pi.

If you want to remove it again in the future, simply grip the end of the card
and pull it gently out. If you’re using an older model of Raspberry Pi, you’ll
need to give the card a gentle push first to unlock it; this isn’t necessary with
a Raspberry Pi 3, 4, 5, or any model of Raspberry Pi Zero.

Connecting a keyboard and mouse
Connect the keyboard’s USB cable to any of the four USB ports (black USB 2.0
or blue USB 3.0) on Raspberry Pi as shown in Figure 2-14. If you’re using the
Official Raspberry Pi Keyboard, there’s a USB port on its back for the mouse.
Otherwise, just connect the USB cable from your mouse to another USB port
on Raspberry Pi.

Figure 2-14 Plugging a USB cable into a Raspberry Pi 5

For Raspberry Pi Zero 2 W, you’ll need to use a micro USB OTG adapter cable.
Insert this into the left-hand micro USB port, then connect the USB cable
from your keyboard to the USB OTG adapter.

If you are using a keyboard with a separate mouse, rather than one with a
built-in touchpad, you’ll also need to use a powered USB hub. Connect the
micro USB OTG adapter cable as above, then connect the hub’s USB cable to

22 · Chapter 2 · Getting started with your Raspberry Pi

Figure 2-15
Connecting the HDMI cable to a Raspberry Pi Zero

Figure 2-16
Connecting the HDMI cable to a Raspberry Pi 5

the USB OTG adapter before connecting your keyboard and mouse to the USB
hub. Finally, connect the hub’s power adapter and switch it on.

The USB connectors for the keyboard and mouse should slide home without
too much pressure; if you’re having to force the connector in, there’s some-
thing wrong. Check that the USB connector is the right way up!

Connecting a display
For Raspberry Pi 4 and Raspberry Pi 5, take the micro HDMI cable and con-
nect the smaller end to the micro HDMI port closest to the USB Type-C port
on your Raspberry Pi. Connect the other end to your display as shown in Fig-
ure 2-16.

For Raspberry Pi Zero 2 W (Figure 2-15), take the mini HDMI cable and con-
nect the smaller end to the mini HDMI port at the left-hand side of your Rasp-
berry Pi, under the microSD slot. The other end connects to your display.

If your display has more than one HDMI port, look for a port number next
to the connector itself; you’ll need to switch the TV to this input to see your
Raspberry Pi’s display. If you can’t see a port number, don’t worry, you can
simply switch through each input in turn until you find Raspberry Pi.

KEYBOARD AND MOUSE

The keyboard and mouse act as your main means of telling Raspberry Pi what to do;

in computing, these are known as input devices, in contrast with the display, which is

an output device.

?

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 23

Connecting a network cable (optional)
To connect your Raspberry Pi to a wired network, take a network cable —
known as an Ethernet cable — and push it into Raspberry Pi’s Ethernet port,
with the plastic clip facing downwards, until you hear a click (see Figure
2-17). If you need to remove the cable, squeeze the plastic clip inwards to-
wards the plug and gently slide the cable free again.

The other end of your network cable should be connected to any free port on
your network hub, switch, or router in the same way.

Connecting a power supply
Connecting your Raspberry Pi to a power supply is the final step in the hard-
ware setup process. It’s the last thing you’ll do before you start setting up its
software. Your Raspberry Pi will turn on as soon as it’s connected to a live
power supply.

For Raspberry Pi 4 and Raspberry Pi 5, connect the USB C end of the power
supply cable to the USB C power connector on your Raspberry Pi as shown in
Figure 2-18. It can go in either way around, and should slide home gently. If
your power supply has a detachable cable, make sure the other end is plugged
into the body of the power supply.

TV CONNECTION

If your TV or monitor doesn’t have an HDMI connector, that doesn’t mean you can’t

use a Raspberry Pi. Adapter cables, available from any electronics stockist, will allow

you to convert the micro or mini HDMI port on your Raspberry Pi to DVI-D, DisplayPort,

or VGA for use with other computer monitors.

WARNING!

Raspberry Pi 5 needs a 5V power supply capable of delivering 5A of current, and a

suitable E-Marked USB C cable. If you connect a lower-current power supply, including

the Official Raspberry Pi 4 Power Supply, Raspberry Pi 5’s USB ports will be limited to

low-power devices only.

?

!

24 · Chapter 2 · Getting started with your Raspberry Pi

Figure 2-17
Connecting Raspberry Pi 5 to Ethernet

Figure 2-18
Powering your Raspberry Pi 5

For Raspberry Pi Zero 2 W, connect the micro USB end of the power supply ca-
ble to the right-hand micro USB port on your Raspberry Pi. It can only go in one
way up, so make sure to check its orientation before pushing it gently in.

Congratulations: you have put your Raspberry Pi together!

Figure 2-19 Your Raspberry Pi is ready to go!

Finally, connect the power supply to a mains socket, switch the socket on,
and your Raspberry Pi will immediately start running.

You’ll briefly see a rainbow-coloured cube followed by an informational
screen with a Raspberry Pi logo on it. You may also see a blue screen appear

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 25

as the operating system resizes itself to make full use of your microSD card. If
you see a black screen, wait a few minutes; the first time Raspberry Pi boots
it will perform some housekeeping in the background, which can take a little
time.

After a while you’ll see the Raspberry Pi OS Welcome Wizard, as in Figure
2-20. Your operating system is now ready to be configured, which you’ll learn
to do in Chapter 3, Using your Raspberry Pi.

Figure 2-20 The Raspberry Pi OS Welcome Wizard

Setting up Raspberry Pi 400
Unlike Raspberry Pi 4, Raspberry Pi 400 comes with a built-in keyboard and
the microSD card already installed. You’ll still need to connect a few cables to
get started, but it should only take you a few minutes.

Connecting a mouse
Raspberry Pi 400’s keyboard is already connected, leaving you with just the
mouse to add. Take the USB cable at the end of the mouse and insert it into
any of the three USB ports (2.0 or 3.0) on the rear panel of your Raspberry Pi
400. If you want to save the two high-speed USB 3.0 ports for other acces-
sories, use the white USB 2.0 port.

The USB connector should slide home without too much pressure (see Figure
2-21). If you’re having to force the connector in, there’s something wrong.
Check that the USB connector is the right way up!

26 · Chapter 2 · Getting started with your Raspberry Pi

Figure 2-21
Plugging a USB cable into a Raspberry Pi 400

Figure 2-22
Connecting the HDMI cable to a Raspberry Pi 400

Connecting a display
Take the micro HDMI cable and connect the smaller end to the micro HDMI
port closest to the microSD slot on your Raspberry Pi 400, and the other end
to your display, as shown in Figure 2-22. If your display has more than one
HDMI port, look for a port number next to the connector itself; you’ll need
to switch the TV or monitor to this input to see Raspberry Pi’s display. If you
can’t see a port number, don’t worry: you can simply switch through each in-
put in turn until you find Raspberry Pi.

Connecting a network cable (optional)
To connect your Raspberry Pi 400 to a wired network, take a network cable
— known as an Ethernet cable — and push it into Raspberry Pi 400’s Ethernet
port, with the plastic clip facing upwards, until you hear a click (Figure 2-23).
If you need to remove the cable, just squeeze the plastic clip inwards towards
the plug and gently slide the cable free again.

The other end of your network cable should be connected to any free port on
your network hub, switch, or router in the same way.

Connecting a power supply
Connecting Raspberry Pi 400 to a power supply is the very last step in the
hardware setup process, and it’s one you should do only when you’re ready to
set up its software. Raspberry Pi 400 does not have a power switch and will
turn on as soon as it is connected to a live power supply.

First, connect the USB Type-C end of the power supply cable to the USB
Type-C power connector on Raspberry Pi. It can go in either way around and
should slide home gently. If your power supply has a detachable cable, make
sure the other end is plugged into the body of the power supply.

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 27

Figure 2-23 Connecting Raspberry Pi 400 to Ethernet

Finally, connect the power supply to a mains socket and switch the socket on:
your Raspberry Pi 400 will immediately start running. Congratulations, you
have put your Raspberry Pi 400 together (Figure 2-24)!

Figure 2-24 Your Raspberry Pi 400 is all wired up!

28 · Chapter 2 · Getting started with your Raspberry Pi

You’ll briefly see a rainbow-coloured cube followed by an informational screen
with a Raspberry Pi logo on it. You may also see a blue screen appear as the op-
erating system resizes itself to make full use of your microSD card. If you see a
black screen, wait a few minutes: the first time Raspberry Pi boots it will per-
form some housekeeping in the background, which can take a little time.

After a while you’ll see the Raspberry Pi OS Welcome Wizard, as shown earlier
in Figure 2-20. Your operating system is now ready to be configured, which
you’ll learn to do in Chapter 3, Using your Raspberry Pi.

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 29

Chapter 3

Using your Raspberry Pi
Learn about the Raspberry Pi operating system.

Your Raspberry Pi can run a wide range of software, including a number of
different operating systems — the core software that makes a computer run.
The most popular of these, and the official operating system of the Raspber-
ry Pi Foundation, is Raspberry Pi OS. Based on Debian Linux, it is tailor-made
for Raspberry Pi and comes with a range of extra software pre-installed and
ready to go.

If you’ve only ever used Microsoft Windows or Apple macOS, don’t worry:
Raspberry Pi OS is based on the same intuitive windows, icons, menus, and
pointer (WIMP) principles, and should quickly become familiar.

Read on to get started and find out more about some of the bundled software.

The Welcome Wizard
The first time you run Raspberry Pi OS, you’ll see the Welcome Wizard (Figure
3-1). This helpful tool will walk you through changing some settings in Rasp-
berry Pi OS, known as the configuration, to match how and where you will be
using your Raspberry Pi.

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 31

Figure 3-1 The Welcome Wizard

Click the Next button, then choose your country, language, and time zone by
clicking on each drop-down box in turn and selecting your answer from the
list (Figure 3-2). If you are using a US-layout keyboard, click on the check box
to make sure Raspberry Pi OS uses the correct keyboard layout. If you want
the desktop and programs to appear in English, regardless of your country’s
native language, click on the Use English language checkbox to tick it. When
you’re finished, click Next.

Figure 3-2 Selecting a language, among other
options

The next screen will ask you to choose a name and password for your user ac-
count (Figure 3-3). Choose a name — it can be anything you like, but it must
start with a letter and can only contain lower-case letters, digits, and hyphens.
Then you’ll need to create a memorable password. You’ll be asked to type the
password twice to make sure you didn’t make any mistakes that could lock you
out of your new account. When you’re happy with your choices, click Next.

32 · Chapter 3 · Using your Raspberry Pi

Figure 3-3 Setting a new password

The following screen will allow you to choose your Wi-Fi network from a list
(Figure 3-4).

Figure 3-4 Choosing a wireless network

Scroll through the list of networks with the mouse or keyboard, find your net-
work’s name, click on it, then click Next. Assuming that your wireless network
is secure (it really should be), you’ll be asked for its password (also known as
its pre-shared key). If you don’t use a custom password, the default is normally

WIRELESS NETWORKING

Built-in wireless networking is only available on the Raspberry Pi 3, Raspberry Pi 4,

Raspberry Pi 5, and Raspberry Pi Zero W and Zero 2 W families. If you want to use a

different model of Raspberry Pi with a wireless network, you’ll need a USB Wi-Fi

adapter.

?

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 33

written on a card that comes with the router, or on the bottom or back of the
router itself. Click Next to connect to the network. If you don’t want to con-
nect to a wireless network, click Skip.

Next you will be asked to choose your default web browser from the two pre-
installed in Raspberry Pi OS: Google’s Chromium, the default, and Mozilla’s
Firefox (Figure 3-5). For now, just leave Chromium selected as the default, so
you can follow along with this book; you can always switch to Firefox later,
if you’d prefer. If you do change the default browser, you can also choose to
uninstall the non-default browser to save space on your microSD card. Just
tick the box when you are offered the option, and click the Next button.

Figure 3-5 Selecting a browser

The next screen will allow you to check for and install updates for Raspberry
Pi OS and the other software on Raspberry Pi (Figure 3-6). Raspberry Pi OS
is regularly updated to fix bugs, add new features, and improve performance.
To install these updates, click Next. Otherwise, click Skip. Downloading the
updates can take several minutes, so be patient.

Figure 3-6 Checking for updates

34 · Chapter 3 · Using your Raspberry Pi

When the updates are installed, a window saying ‘System is up to date’ will
appear; click the OK button.

The final screen of the Welcome Wizard (Figure 3-7) provides one last bit of
information: certain changes made will only take effect when you restart your
Raspberry Pi (a process also known as rebooting). Click the Restart button
and your Raspberry Pi will restart. From now on, the Welcome Wizard won’t
appear; its job is done, and your Raspberry Pi is ready to use.

Figure 3-7 Restarting Raspberry Pi

WARNING!

If, after your Raspberry Pi starts up, you see a message in the top-right corner telling

you “this power supply is not capable of supplying 5A,” it means you’re using a power

supply which can’t supply the 5V at 5A required by Raspberry Pi 5. You should replace

your power supply with one supporting Raspberry Pi 5, like the Official Raspberry Pi 5

Power Supply. You can also ignore the warning and continue to use Raspberry Pi 5,

but certain high-power USB devices — like hard drives — won’t work.

If you see a “low voltage warning” message, accompanied by a lightning-bolt symbol,

you should stop using your Raspberry Pi until you can replace the power supply: volt-

age droop from low-quality power supplies can cause Raspberry Pi to crash, losing

your work.

!

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 35

Navigating the desktop
The version of Raspberry Pi OS installed on most Raspberry Pi boards is prop-
erly known as ‘Raspberry Pi OS with desktop’, referring to its main graphical
user interface (Figure 3-8). The bulk of this desktop is taken up with a wall-
paper picture (A in Figure 3-8), on top of which the programs you run will ap-
pear. At the top of the desktop is a taskbar (B), which allows you to launch
your installed programs. These are then indicated by tasks (C) in the taskbar.

Figure 3-8 The Raspberry Pi OS desktop

A Wallpaper

B Taskbar

C Task

D System Tray

E Software Update icon

F Media eject

G Bluetooth icon

H Network icon

I Volume icon

J Clock

K Launcher

L Menu (or Raspberry Pi icon)

M Wastebasket icon

N Removable drive icon

O Window title bar

P Minimise

Q Maximise

R Close

36 · Chapter 3 · Using your Raspberry Pi

The right-hand side of the menu bar houses the system tray (D). The software
update icon (E) appears only when there are updates to Raspberry Pi OS and
its applications. If you have any removable storage, such as USB memory
sticks, connected to Raspberry Pi you’ll see an eject symbol (F); click this to
safely eject and remove them. On the far right is the clock (J); click it to bring
up a digital calendar (Figure 3-9).

Figure 3-9 The digital calendar

Next to this is a speaker icon (I). Click on it with the left mouse button to ad-
just your Raspberry Pi’s audio volume, or click with the right mouse button to
choose which output Raspberry Pi should use for its sound. Next to that is a
network icon (H); if you’re connected to a wireless network you’ll see the sig-
nal strength displayed as a series of bars, but if you’re connected to a wired
network you’ll just see two arrows. Clicking the network icon will bring up a
list of nearby wireless networks (Figure 3-10), while clicking on the Bluetooth
icon (G) next to that will allow you to connect to a nearby Bluetooth device.

Figure 3-10 Listing nearby wireless networks

The left-hand side of the menu bar is home to the launcher (K), which is where
you’ll find the programs installed alongside Raspberry Pi OS. Some of these
are visible as shortcut icons; others are hidden away in the menu, which you
can bring up by clicking the Raspberry Pi icon (L) to the far left (<<The_Rasp-
berry_Pi_OS_menu>>).

The programs in the menu are split into categories. Each category’s name tells
you what to expect: the Programming category contains software designed to
help you write your own programs — as explained starting in Chapter 4, Pro-
gramming with Scratch 3 — while Games will help you while away the hours.

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 37

Figure 3-11 The Raspberry Pi menu

Not every program will be detailed in this guide, so feel free to experiment
with them to learn more. On the desktop, you’ll find the Wastebasket (M) and
any external storage devices (N) connected to your Raspberry Pi.

The Chromium web browser
To practise using your Raspberry Pi, start by loading the Chromium web
browser: click on the Raspberry Pi icon at the top-left to bring up the menu,
move your mouse pointer to select the Internet category, and click on
Chromium Web Browser to load it.

If you’ve used Google’s Chrome browser on another computer, the Chromium
browser will be immediately familiar. Chromium lets you visit websites, play
videos, games, and even communicate with people all over the world on fo-
rums and chat sites.

Start using Chromium by maximising its window so it fills the screen: find the
three icons at the top-right of the Chromium window title bar (O) and click
on the middle, up-arrow icon (Q). This is the maximise button. To the left of
maximise is minimise (P), which will hide a window until you click on it in the
taskbar at the top of the screen. The cross to the right of maximise is close (R),
which does exactly what you’d expect: it closes the window.

CLOSE AND SAVE

Closing a window before you’ve saved any work you’ve done is a bad idea; while many

programs will warn you to save when you click the close button, others won’t.

?

38 · Chapter 3 · Using your Raspberry Pi

The first time you run the Chromium web browser, the Raspberry Pi website
should load automatically, as shown in Figure 3-12. If not (or to visit other
websites), click in the address bar at the top of the Chromium window —
the big white bar with a magnifying glass on the left-hand side — and type
raspberrypi.com (or the address of the website you want to visit), then press
the ENTER key on your keyboard. The Raspberry Pi website will load.

You can also type searches into the address bar: try searching for ‘Raspberry
Pi’, ‘Raspberry Pi OS’, or ‘retro gaming’.

Figure 3-12 The Raspberry Pi website in Chromium

The first time you load Chromium, it may bring up several tabs along the top
of the window. To switch to a different tab, click on it; to close a tab without
closing Chromium itself, click the cross on the right-hand side of the tab
you want to close.

To open a new tab, which is a handy way of having multiple websites open
without having to juggle multiple Chromium windows, either click on the
tab button to the right of the last tab in the list, or hold down the CTRL key
on the keyboard and press the T key before letting go of CTRL.

When you’re finished with Chromium, click the close button at the top-right
of the window.

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 39

The File Manager
Files you save — for example, programs, videos, images — all go into your
home directory. To see the home directory, click on the Raspberry Pi icon
again to bring up the menu, move the mouse pointer to select Accessories,
then click on File Manager to load it (Figure 3-13).

Figure 3-13 The file manager

The File Manager lets you browse the files and folders, also known as directo-
ries, on Raspberry Pi’s microSD card, as well as those on any removable storage
devices — like USB flash drives — you have connected to your Raspberry Pi’s
USB ports. When you first open it, it automatically goes to your home directory.
In here you’ll find a series of other folders, known as subdirectories, which —
like the menu — are arranged in categories. The main subdirectories are:

▶ Bookshelf — This contains digital copies of books and magazines from
Raspberry Pi Press. You can read and download books with the Book-
shelf application in the Help section of the menu.

▶ Desktop — This folder is what you see when you first load Raspberry
Pi OS. If you save a file in here it will appear on the desktop, making it
easy to find and load.

▶ Documents — Home to most of the text files you’ll create, from short
stories to recipes.

▶ Downloads — When you download a file from the internet using the
Chromium web browser, it will be automatically saved in Downloads.

40 · Chapter 3 · Using your Raspberry Pi

▶ Music — Any music you create or download can be stored here.

▶ Pictures — This folder is specifically for pictures, known in technical
terms as image files.

▶ Public — While most of your files are private, anything you put in Pub-
lic will be available to other users of your Raspberry Pi, even if they
have their own username and password.

▶ Templates — This folder contains any templates — blank documents
with a basic layout or structure already in place — which have been
installed by your applications or created by you.

▶ Videos — A folder for videos, and the first place most video-playing
programs will check for content.

The File Manager window itself is split into two main panes: the left pane
shows the directories on your Raspberry Pi, and the right pane shows the files
and subdirectories of the directory selected in the left pane.

If you plug a removable storage device into the Raspberry Pi’s USB port, a
window will pop up asking if you’d like to open it in the File Manager (Figure
3-14). Click OK and you’ll be able to see its files and directories.

Figure 3-14 Inserting a removable storage device

You can easily drag and drop files between Raspberry Pi’s microSD card and a
removable device. With your home directory and the removable device open
in separate File Manager windows, move your mouse pointer to the file you

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 41

want to copy, click and hold the left mouse button down, slide your mouse
pointer to the other window, and let go of the mouse button (Figure 3-15).

Figure 3-15 Dragging and dropping a file

An easy way to copy a file is to click once on the file, click the Edit menu, click
Copy, click the other window, then click the Edit menu and click Paste.

The Cut option, also available in the Edit menu, is similar, but it deletes the
file from its original home after making the copy. Both options can also be
used through the keyboard shortcuts CTRL+C (copy) or CTRL+X (cut), and
CTRL+V (paste).

When you’ve finished experimenting, close the File Manager by clicking the
close button at the very top-right of the window. If you have more than one
window open, close them all. If you connected a removable storage device to
your Raspberry Pi, eject it by clicking the eject button at the top-right of the
screen, finding it in the list, and clicking on it before unplugging it.

KEYBOARD SHORTCUTS

When you see a keyboard shortcut like CTRL+C, it means to hold down the first key on

the keyboard (CTRL), press the second key (C), then let go of both keys.

EJECT DEVICES

Always use the eject button before unplugging an external storage device. If you don’t,

the files on it may become corrupt and unusable.

?

?

42 · Chapter 3 · Using your Raspberry Pi

The Recommended Software tool
Raspberry Pi OS comes with a wide range of software already installed, but
your Raspberry Pi is compatible with even more. A selection of the best of this
software can be found in the Recommended Software tool.

Note that the Recommended Software tool needs a connection to the internet.
If your Raspberry Pi is connected, click on the Raspberry Pi icon, move your
mouse pointer to Preferences, and click on Recommended Software. The tool
will load and start downloading information about available software.

After a few seconds, a list of compatible software packages will appear (Fig-
ure 3-16). These, like the software in the Raspberry Pi menu, are arranged into
various categories. Click on a category in the pane on the left to see software
from that category, or click All Programs to see everything.

Figure 3-16 The Recommended Software tool

If a piece of software has a tick next to it, it’s already installed on your Rasp-
berry Pi. If it doesn’t, you can click on the check box next to it to add a
tick and mark it for installation. You can mark as many pieces of software
as you like before installing them all at once, but if you’re using a smaller-
than-recommended microSD card you may not have room for them all.

There’s software available for Raspberry Pi OS to perform a wide range of
tasks, including a selection of games written for the book Code the Classics,

PRE-INSTALLED APPLICATIONS

Some versions of Raspberry Pi OS come with more software installed than others. If

the Recommended Software Tool says Code the Classics is already installed — if

there’s already a tick in the checkbox — you can choose something else from the list

to install instead.

?

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 43

Volume 1 — a walk through the history of gaming which teaches you how to
write your own games in Python, available at store.rpipress.cc.

To install the Code the Classics games, click on the checkbox next to Code
the Classics to tick it; you may need to scroll down the list of applications to
see it. You’ll see the text (will be installed) appear to the right of the applica-
tion you selected, as shown in Figure 3-17.

Figure 3-17 Selecting Code the Classics for
installation

Click Apply to install the software; you’ll be asked to enter your password.
It will take up to a minute, depending on the speed of your internet connec-
tion, to install (Figure 3-18). Once the process is finished, you’ll see a message
telling you that installation is complete. Click OK to close the dialogue box,
then click the Close button to close the Recommended Software tool.

Figure 3-18 Installing Code the Classics

If you change your mind about software you’ve installed, you can free up
space by uninstalling it. Just load the Recommended Software tool again,
find the software in the list, and click the checkbox to remove the tick. When
you click Apply, the software will be removed, but any files you’ve created
with it and saved in your Documents folder will remain.

44 · Chapter 3 · Using your Raspberry Pi

http://store.rpipress.cc/

Another tool for installing or uninstalling software, the Add/Remove Soft-
ware tool, can be found in the same Preferences category of the Raspberry
Pi menu. This offers a wider selection of software beyond the list of recom-
mended software. Learn how to use the Add/Remove Software tool in Appen-
dix B, Installing and uninstalling software.

The LibreOffice productivity suite
For another taste of what Raspberry Pi can do, click on the Raspberry Pi icon,
move your mouse pointer to Office, and click on LibreOffice Writer. This will
load the word processor portion of LibreOffice (Figure 3-19), a popular open-
source productivity suite.

Figure 3-19 The LibreOffice Writer program

NO LIBREOFFICE?

If you don’t have an Office category in your Raspberry Pi menu, or if you can’t find Libre-

Office Writer in there, it may not be installed. Go back to the Recommended Software

tool and install it there before proceeding with this section.

?

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 45

A word processor lets you write and format documents: you can change the
font style, colour, size, add effects, and even insert pictures, charts, tables,
and other content. A word processor also lets you check your work for mis-
takes, highlighting spelling and grammar problems in red and green respec-
tively as you type.

Begin by writing a paragraph so you can experiment with formatting. If
you’re feeling particularly keen, you could write about what you’ve learned
about Raspberry Pi and its software so far. Explore the different icons at the
top of the window to see what they do: see if you can make your writing big-
ger and change its colour. If you’re not sure how to do this, simply move your
mouse pointer over each icon to display a ‘tool tip’ telling you what that icon
does. When you’re satisfied, click the File menu and the Save option to save
your work (Figure 3-20). Give it a name and click the Save button.

Figure 3-20 Saving a document

SAVE YOUR WORK

Get in the habit of saving your work, even if you haven’t finished it yet. It will save you

a lot of trouble if there’s a power cut and you’re interrupted part-way through!

?

46 · Chapter 3 · Using your Raspberry Pi

LibreOffice Writer is only part of the overall LibreOffice productivity suite.
The other parts, which you’ll find in the same Office menu category as Libre-
Office Writer, are:

▶ LibreOffice Base — A database: a tool for storing information, looking
it up quickly, and analysing it.

▶ LibreOffice Calc — A spreadsheet: a tool for handling numbers and cre-
ating charts and graphs.

▶ LibreOffice Draw — An illustration program: a tool for creating pictures
and diagrams.

▶ LibreOffice Impress — A presentation program: for creating slides and
running slideshows.

▶ LibreOffice Math — A formula editor: for creating properly-formatted
mathematical formulae which can be used in other documents.

LibreOffice is also available for other computers and operating systems. If
you enjoy using it on your Raspberry Pi, you can download it for free from
libreoffice.org and install it on any Microsoft Windows, Apple macOS, or Lin-
ux computer. You can close LibreOffice Writer by clicking the close button at
the top-right of the window.

Raspberry Pi Configuration tool
The last program you’ll learn about in this chapter is known as the Raspberry
Pi Configuration tool, and it’s a lot like the Welcome Wizard you used at the
start: it allows you to change various settings in Raspberry Pi OS. Click on the
Raspberry Pi icon, move your mouse pointer to select the Preferences cate-
gory, then click on Raspberry Pi Configuration to load it (Figure 3-21).

The tool is split into five tabs. The first of these is System: this allows you
to change the password of your account, set a host name — the name your
Raspberry Pi uses on your local wireless or wired network — and alter a range
of other settings, including choosing a default web browser. The majority of
these shouldn’t need changing. Click on the Display tab to bring up the next

GETTING HELP

Most programs include a Help menu which has everything from information about

what the program is to guides on how to use it. If you ever feel lost or overwhelmed by

a program, look for the Help menu to reorient yourself.

?

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 47

Figure 3-21 The Raspberry Pi Configuration tool

category. Here you can alter the screen display settings, if needed, to suit
your TV or monitor.

The Interface tab offers a range of settings, all of which (except for Serial
Console and Serial Port) start off disabled. These settings should only be
changed if you’re adding new hardware, and even then only if instructed by
the hardware’s manufacturer. The exceptions to this rule are SSH, which en-
ables a ‘Secure Shell’ and lets you log into Raspberry Pi from another com-
puter on your network using an SSH client; VNC, which enables a ‘Virtual
Network Computer’ and lets you see and control the Raspberry Pi OS desktop
from another computer on your network using a VNC client; and Remote
GPIO, which lets you use Raspberry Pi’s GPIO pins — about which you’ll
learn more in Chapter 6, Physical computing with Scratch and Python — from
another computer on your network.

Click on the Performance tab to see the fourth category. Here you configure
the overlay file system, which is a way to run your Raspberry Pi without writ-
ing changes to the microSD card. It’s not something you’ll need to do in most
cases, so most users can just leave this section as-is.

Finally, click on the Localisation tab to see the last category. Here you can
change your locale, which controls things like the language used in Raspber-
ry Pi OS and how numbers are displayed; change the time zone; change the

MORE DETAILS

This brief overview is simply to get you used to the tool. More detailed information on

each of its settings can be found in Appendix E, Raspberry Pi Configuration Tool.

?

48 · Chapter 3 · Using your Raspberry Pi

keyboard layout; and set your country for Wi-Fi purposes. For now, though,
just click on Cancel to close the tool without making any changes.

Software updates
Raspberry Pi OS receives frequent updates, which add new features or fix
bugs. If Raspberry Pi is connected to a network via an Ethernet cable or Wi-
Fi, it will automatically check for updates and let you know if any are ready to
be installed with a small icon in the system tray (it looks like an arrow point-
ing down into a tray, surrounded by a circle).

If you see this icon at the top-right of your desktop, there are updates ready
to install. Click the icon then click Install Updates to download and install
them. If you’d prefer to see what the updates are first, click Show Updates to
see a list (Figure 3-22).

Figure 3-22 Using the software update tool

The time it takes to install updates varies depending on how many there are
and how fast your internet connection is, but it should only take a few min-
utes. After the updates are installed, the icon will disappear from the system
tray until there are more updates to install.

Some updates are designed to improve the security of Raspberry Pi OS. It’s
important to use the software update tool to keep your operating system up-
to-date!

WARNING!

Different countries have different rules about what frequencies a Wi-Fi radio can use.

Setting the Wi-Fi country in the Raspberry Pi Configuration Tool to a different country

from the one you’re actually in is likely to make it struggle to connect to your networks

and can even be illegal under radio licensing laws — so don’t do it!

!

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 49

Shutting down
Now you’ve explored the Raspberry Pi OS desktop, it’s time to learn a very
important skill: safely shutting your Raspberry Pi down. Like any computer,
Raspberry Pi keeps the files you’re working on in volatile memory — memory
which is emptied when the system is switched off. For documents you’re cre-
ating, it’s enough to save each in turn — which moves the file from volatile
memory to non-volatile memory (the microSD card) — to ensure you don’t lose
anything.

The documents you’re working on aren’t the only files open, though. Rasp-
berry Pi OS itself keeps a number of files open while it’s running, and pulling
the power cable from your Raspberry Pi while these are still open can result
in the operating system becoming corrupt and needing to be reinstalled.

To prevent this from happening, you need to make sure you tell Raspberry Pi
OS to save all its files and prepare to be powered off — a process known as
shutting down the operating system.

Click on the Raspberry Pi icon at the top left of the desktop and then click
on Shutdown. A window will appear with three options (Figure 3-23): Shut-
down, Reboot, and Logout. Shutdown is the option you’ll use most: clicking
on this will tell Raspberry Pi OS to close all open software and files, then shut
the Raspberry Pi down. Once the display has gone black, wait a few seconds
until the flashing green light on your Raspberry Pi goes off, after which it’s
safe to turn off the power supply.

If you press the button once, you’ll see the same window appear as if you’d
clicked the Raspberry Pi icon followed by Shutdown; press the power button
again when the window is visible and Raspberry Pi will shut down safely.

If you press and hold the power button for longer, it will perform a hard shut-
down — effectively the same as if you’d just turned the power off. Only do this
if your Raspberry Pi isn’t responding to your instructions and you can’t shut
down any other way, as it runs the risk of corrupting your files or operating
system.

To turn Raspberry Pi back on disconnect then reconnect the power cable, or
toggle the power at the wall socket.

Reboot goes through a similar process to Shutdown, closing everything
down, but instead of turning Raspberry Pi’s power off, it restarts Raspberry
Pi — as if you’d chosen Shutdown, then disconnected and reconnected the
power cable. You’ll need to use Reboot if you make certain changes which re-
quire a restart of the operating system — such as installing certain updates to

50 · Chapter 3 · Using your Raspberry Pi

Figure 3-23
Shutting down Raspberry Pi

its core software — or if some software has gone wrong, known as crashing,
and left Raspberry Pi OS in an unusable state.

Logout is useful if you have more than one user account on your Raspberry
Pi: it closes any programs you currently have open and takes you to a login
screen on which you are prompted for a username and password. If you hit
Logout by mistake and want to get back in, simply type the username and
whatever password you chose in the Welcome Wizard at the start of this
chapter.

WARNING!

Never remove the power cable from a Raspberry Pi or turn the power supply off at the

wall without shutting down first. Doing so is likely to corrupt the operating system,

and you could also lose any files you have created or downloaded.

!

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 51

Chapter 4

Programming with Scratch 3
Learn how to start coding using Scratch, a block-based pro-
gramming language.

Using Raspberry Pi isn’t just about using software other people have created:
it’s also about creating your own software, based on almost anything your
imagination can conjure. Whether or not you have previous experience with
creating your own programs — a process known as programming or coding —
you’ll find Raspberry Pi is a great platform for creation and experimentation.

Key to the accessibility of coding on Raspberry Pi is Scratch, a visual pro-
gramming language developed by the Massachusetts Institute of Technology
(MIT). Whereas traditional programming languages require text-based in-
structions for the computer to carry out, in much the same way as you might
write a recipe for baking a cake, Scratch has you build your program step-by-
step using blocks — pre-written chunks of code disguised as colour-coded
jigsaw pieces.

Scratch is a great first language for budding coders of any age, but don’t be
fooled by its friendly appearance: it’s still a powerful and fully functional pro-
gramming environment which you can use to create everything from simple
games and animations through to complex interactive robotics projects.

WARNING!

At the time of writing, Scratch 3 had not received an update to support Raspberry Pi 5.

If you’re having problems, check for an update (see “Software updates” on page 49). If

no update is available, check this book’s GitHub repository at rptl.io/bg-resources for

status information regarding a forthcoming update.

!

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 53

http://rptl.io/bg-resources

Introducing the Scratch 3 interface

Like actors in a play, your characters move around the stage (A) under the
control of your Scratch program. These characters are known as sprites (B).
To change the stage, such as to add your own background, use the stage con-
trols (C). All the sprites you have created or loaded are in the Sprites list (D).

All the blocks available for your program appear in the blocks palette (E),
which features colour-coded categories. Blocks (F) are pre-written chunks of
code. You build your program in the code area (G) by dragging and dropping
blocks from the blocks palette to form scripts.

A Stage area

B Sprite

C Stage controls

D Sprites list

E Blocks palette

F Blocks

G Code area

SCRATCH VERSIONS

There are two versions of Scratch available for Raspberry Pi OS: Scratch and Scratch

3. This book is written with Scratch 3 in mind, which is only compatible with Raspber-

ry Pi 4, Raspberry Pi 5, and Raspberry Pi 400.

!

54 · Chapter 4 · Programming with Scratch 3

Your first Scratch program: Hello, World!
Scratch 3 loads like any other program on Raspberry Pi: click on the Raspber-
ry Pi icon to load the Raspberry Pi menu, move the cursor to the Programming
section, and click on Scratch 3. After a few seconds, the Scratch 3 user inter-
face will display. You may see a message about data collection: you can click
Yes if you’re happy to submit usage data to the Scratch Team, otherwise click
No. Scratch will finish loading once you’ve made your choice.

Most programming languages need you to tell the computer what to do
through written instructions, but Scratch is different. Start by clicking on the
Looks category in the blocks palette, found at the left of the Scratch window.
This brings up the purple blocks under that category. Find the say Hello!

block, click and hold the left mouse button on it, and drag it over to the code
area at the centre of the Scratch window before letting go of the mouse but-
ton (Figure 4-1).

Figure 4-1 Drag and drop the block into the code area

INSTALLING SCRATCH

If you can’t find Scratch 3 in the Programming menu, it may not be installed in your

version of Raspberry Pi OS. Turn to “The Recommended Software tool” on page 43

and use the instructions there to install Scratch 3 from the Programming category,

then come back here once it’s installed.

?

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 55

Look at the shape of the block you’ve just dropped: it has a hole at the top and
a matching part sticking out at the bottom. Like a jigsaw piece, this shows
you that the block is expecting to have something above it and something be-
low it. For this program, that something above is a trigger.

Click on the Events category of the blocks palette, coloured gold, then click
and drag the when clicked block — known as a hat block — onto the code
area. Position it so that the bit sticking out of the bottom connects into the
hole at the top of your say Hello! block until you see a white outline, then let
go of the mouse button. You don’t have to be precise; if it’s close enough, the
block will snap into place. If it doesn’t, click and hold on it again to adjust its
position until it does.

when clicked

say Hello!

Your program is now complete. To make it work, known as running the pro-
gram, click the green flag icon at the top-left of the stage area. If all has gone
well, the cat sprite on the stage will greet you with a cheery ‘Hello!’ (Figure
4-2) — your first program is a success!

Figure 4-2 Click the green flag above the stage and the cat will say ‘Hello’

56 · Chapter 4 · Programming with Scratch 3

Before moving on, name and save your program. Click on the File menu, then
Save to your computer. Type in a name and click the Save button (Figure 4-3).

Figure 4-3 Save your program with a memorable name

Next steps: sequencing
Your program has two blocks, but it only has one real instruction: to say ‘Hel-
lo!’ every time the program runs. To do more, you need to know about se-
quencing. Computer programs, at their simplest, are a list of instructions, just
like a recipe. Each instruction follows on from the last in a logical progression
known as a linear sequence.

Start by clicking and dragging the say Hello! block from the code area back
to the blocks palette (Figure 4-4). This deletes the block, removing it from
your program and leaving just the Trigger block, when clicked .

Click on the Motion category in the blocks palette, then click and drag the
move 10 steps block so it locks into place under the trigger block on the

code area.

WHAT CAN IT SAY?

Some blocks in Scratch can be modified. Try clicking on the word ‘Hello!’, then type

something else and click the green flag again. What happens on the stage?

?

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 57

Figure 4-4 To delete a block, simply drag it out of the code area

As the name suggests, this tells your sprite — the cat — to move a set number
of steps in the direction it’s currently facing.

when clicked

move 10 steps

Next, add more instructions to your program to create a sequence: click on
the Sound category, colour-coded pink, then click and drag the

play sound Meow until done block so it locks underneath the move 10 steps

block. Now keep the sequence going: click on the Motion category again and
drag another move 10 steps block underneath your Sound block, but this
time change 10 to -10 to create a move -10 steps block.

58 · Chapter 4 · Programming with Scratch 3

when clicked

move 10 steps

play sound Meow until done

move -10 steps

Click the green flag above the stage to run the program. You’ll see the cat
move to the right, make a ‘meow’ sound — make sure you’ve got speakers or
headphones connected to hear it — then move back to the start again. Every
time you click the green flag the cat will repeat these actions.

Congratulations! You’ve created a sequence of instructions, which Scratch is
running through one at a time, top to bottom. While Scratch will only run one
instruction at a time from the sequence, it does so very quickly: try delet-
ing the play sound Meow until done block by clicking and dragging the bottom

move -10 steps block to detach it, dragging the play sound Meow until done

block to the blocks palette, then replacing it with the simpler
play sound Meow block before dragging your move -10 steps block back on-

to the bottom of your program.

when clicked

move 10 steps

play sound Meow

move -10 steps

Click the green flag to run your program again. Only this time the cat sprite
doesn’t seem to move. The sprite is moving, but it moves back again so
quickly that it appears to be standing still. This is because using the

play sound Meow block doesn’t mean that the program will wait for the
sound to finish playing before the next step. Because Raspberry Pi ‘thinks’ so
quickly, the next instruction runs before you can see the cat sprite move.

There’s another way to fix this, beyond using the play sound Meow until done

block: click on the light orange Control category of the blocks palette, then
click and drag a wait 1 seconds block between the play sound Meow block
and the bottom move -10 steps block.

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 59

when clicked

move 10 steps

play sound Meow

wait 1 seconds

move -10 steps

Click the green flag to run your program one last time, and you’ll see that the
cat sprite waits for a second after moving to the right before moving back
again. This is known as a delay, and is key to controlling how long your se-
quence of instructions takes to run.

Looping the loop
The sequence you’ve created so far runs only once. You click the green flag,
the cat sprite moves and meows, and then the program stops until you click
the green flag again. It doesn’t have to stop, though, because Scratch includes
a type of Control block known as a loop.

Click on the Control category in the blocks palette and find the forever

block. Click and drag this into the code area, then drop it underneath the
when clicked block and above the first move 10 steps block.

CHALLENGE: ADD MORE STEPS

Try adding more steps to your sequence and changing the values in the existing

steps. What happens when the number of steps in one move block doesn’t match

the number of steps in another? What happens if you try to play a sound while another

sound is still playing?

?

60 · Chapter 4 · Programming with Scratch 3

when clicked

forever

move 10 steps

play sound Meow

wait 1 seconds

move -10 steps

The C-shaped Forever block automatically grows to surround the other
blocks in your sequence. Click the green flag now and you’ll quickly see what
the forever block does: instead of your program running once and finishing,
it will run over and over again — quite literally forever. In programming, this
is known as an infinite loop — a loop that never ends.

If the sound of constant meowing is getting to be a little much, click the red
octagon next to the green flag above the stage area to stop your program.
To change the loop type, pull the first move 10 steps block, and the blocks
beneath it, out of the forever block, then drop them underneath the

when clicked block. Click and drag the forever block to the blocks
palette to delete it, then click and drag the repeat 10 block under the

when clicked block so it goes around the other blocks.

when clicked

repeat 10

move 10 steps

play sound Meow

wait 1 seconds

move -10 steps

Click the green flag to run your new program. At first, it seems to be doing
the same thing as your original version: repeating your sequence of instruc-
tions over and over again. This time, though, rather than continuing forever,
the loop will finish after ten repetitions. This is known as a definite loop —

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 61

you define when it will finish. Loops are powerful tools, and most programs,
especially games and sensing programs, make heavy use of both infinite and
definite loops.

Variables and conditionals
The final concepts you’ll need to understand before beginning to code
Scratch programs in earnest are closely related: variables and conditionals. A
variable is, as the name suggests, a value which can vary — in other words,
change — over time and under control of the program. A variable has two
main properties: its name, and the value it stores. That value doesn’t have
to be a number, either. It can be numbers, text, true-or-false (also known as
boolean values), or completely empty — known as a null value.

Variables are powerful tools. Think of the things you have to track in a game:
the health of a character, the speed of moving object, the level being played,
and the score. All of these are tracked as variables.

First, click the File menu and save your existing program by clicking Save to
your computer. If you saved the program earlier, you’ll be asked if you want
to overwrite it, replacing the old saved copy with your new, up-to-date ver-
sion. Next, click File and then New to start a new, blank project (click OK
when asked if you want to replace the contents of the current project). Click
on the dark orange Variables category in the blocks palette, then the Make a
Variable button. Type loops as the variable name (Figure 4-5), then click OK
to make a series of blocks appear in the blocks palette.

Click and drag the set loops to 0 block to the code area. This tells your pro-
gram to initialise the variable with a value of 0. Next, click on the Looks cat-
egory of the blocks palette and drag the say Hello! for 2 seconds block under
your set loops to 0 block.

set loops to 0

say Hello! for 2 seconds

As you found earlier, the say Hello! blocks cause the cat sprite to say what-
ever is written in them. Rather than writing the message in the block yourself,

WHAT HAPPENS NOW?

What happens if you change the number in the loop block to make it larger? What

happens if it’s smaller? What happens if you put the number 0 in the loop block?

?

62 · Chapter 4 · Programming with Scratch 3

Figure 4-5 Give your new variable a name

though, you can use a variable instead. Click back onto the Variables cate-
gory in the blocks palette, then click and drag the rounded loops block —
known as a reporter block, found at the top of the list with a tick-box next to
it — over the word Hello! in your say Hello! for 2 seconds block. This creates
a new, combined block: say loops for 2 seconds .

set loops to 0

say loops for 2 seconds

Click on the Events category in the blocks palette, then click and drag the
when clicked block to place it on top of your sequence of blocks. Click

the green flag above the stage area, and you’ll see the cat sprite say ‘0’. (Figure
4-6) — the value you gave to the variable ‘loops’.

Variables aren’t unchanging, though. Click on the Variables category in the
blocks palette, then click and drag the change loops by 1 block to the bottom
of your sequence.

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 63

Figure 4-6 This time the cat will say the value of the variable

Next, click on the Control category, then click and drag a repeat 10 block
and drop it so that it starts directly beneath your set loops to 0 block and
wraps around the remaining blocks in your sequence.

when clicked

set loops to 0

repeat 10

say loops for 2 seconds

change loops by 1

Click the green flag again. This time, you’ll see the cat count upwards from
0 to 9. This works because your program is now changing, or modifying, the
variable itself: every time the loop runs, the program adds one to the value in
the ‘loops’ variable (Figure 4-7).

64 · Chapter 4 · Programming with Scratch 3

Figure 4-7 Thanks to the loop, the cat now counts upwards

You can do more with a variable than modify it. Click and drag the
say loops for 2 seconds block to break it out of the repeat 10 block and drop

it below the repeat 10 block. Click and drag the repeat 10 block to the
blocks palette to delete it, then replace it with a repeat until block, mak-
ing sure the block is connected to the bottom of the set loops to 0 block. It
should surround both of the other blocks in your sequence. Next, click the
Operators category in the blocks palette, colour-coded green, then click and
drag the diamond-shaped = block and drop it on the matching dia-
mond-shaped hole in the repeat until block.

This Operators block lets you compare two values, including variables. Click
on the Variables category, drag the loops reporter block into the empty
space in the = Operators block, then click on the space with 50 in it
and type the number 10.

COUNTING FROM ZERO

Although the loop you’ve created runs ten times, the cat sprite only counts up to nine.

This is because we’re starting with a value of zero for our variable. Including zero and

nine, there are ten numbers between zero and nine — so the program stops before the

cat ever says ‘10’. To change this, you could set the variable’s initial value to 1 instead

of 0.

?

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 65

when clicked

set loops to 0

repeat until loops = 10

say loops for 2 seconds

change loops by 1

Click on the green flag above the stage area and you’ll find the program works
the same way as before: the cat sprite counts from 0 up to 9 (Figure 4-8) and
then the program stops. This is because the repeat until block is working in
exactly the same way as the repeat 10 block, but rather than counting the
number of loops itself, it’s comparing the value of the loops variable to the
value you typed to the right of the block. When the loops variable reaches 10,
the program stops.

Figure 4-8 Using a ‘repeat until’ block with a comparative operator

This is known as a comparative operator: it literally compares two values.
Click on the Operators category of the blocks palette and find the two other
diamond-shaped blocks above and below the one with the = symbol. These
are also comparative operators: < compares two values and is triggered when

66 · Chapter 4 · Programming with Scratch 3

the value on the left is smaller than the one on the right, and > triggers when
the value on the left is larger than the one on the right.

Click on the Control category of the blocks palette, find the if then block,
then click and drag it to the code area before dropping it directly beneath
the say loops for 2 seconds block. It will automatically surround the

change loops by 1 block, so click and drag on that block to move it so it con-
nects to the bottom of your if then block instead. Click on the Looks cate-
gory of the blocks palette, then click and drag a say Hello! for 2 seconds block
and drop it inside your if then block. Click on the Operators category of the
blocks palette, then click and drag the > block into the diamond-
shaped hole in your if then block.

The if then block is a Conditional block, which means the blocks inside it
will only run if a certain condition is met. Click on the Variables category of
the blocks palette, drag and drop the loops reporter block into the empty
space in your > block, then click on the space with 50 in it and type
the number 5. Finally, click on the word Hello! in your

say Hello! for 2 seconds block and type That’s high!.

when clicked

set loops to 0

repeat until loops = 5

say loops for 2 seconds

if > 50 then

say That’s High! for 2 seconds

change loops by 1

Click the green flag to run your program. At first, it will work as before with
the cat sprite counting upwards from zero. When the number reaches six, the
first number greater than five, the if then block will begin to trigger and the
cat sprite will comment on how high the numbers are getting (Figure 4-9).
Congratulations: you can now work with variables and conditionals!

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 67

Figure 4-9 The cat makes a comment when the number reaches six

Project 1: Astronaut reaction timer
Now that you understand how Scratch works, it’s time to make something a
little more interactive: a reaction timer, designed to honour British ESA astro-
naut Tim Peake and his time aboard the International Space Station.

Save your existing program, if you want to keep it, then open a new project
by clicking on File and New. Before you begin, give it a name by clicking on
File and Save to your computer: call it ‘Astronaut reaction timer’.

This project relies on two images — one as a stage background, one as a sprite
— which are not included in Scratch’s built-in resources. To download them,
click on the Raspberry Pi icon to load the Raspberry Pi menu, move the mouse
pointer to Internet, and click on Chromium Web Browser. When the browser
has loaded, type rptl.io/astro-bg into the address bar, then press the ENTER

CHALLENGE: HIGH AND LOW

How could you change the program so the cat sprite comments on how low the num-

bers below five are instead? Can you change it so that the cat will comment on both

high and low numbers? Experiment with the if then else block to make this easier!

?

68 · Chapter 4 · Programming with Scratch 3

http://rptl.io/astro-bg

key. Right-click on the picture of space and click on Save image as, then click
on the Save button (Figure 4-10). Click back into the address bar, and type
rptl.io/astro-sprite followed by the ENTER key.

Figure 4-10 Save the background image

Again, right-click on the picture of Tim Peake and click on Save image as,
then choose the Downloads folder and click on the Save button. With those
two images saved, you can close Chromium or leave it open and use the
taskbar to switch back to Scratch 3.

Right-click the cat sprite in the list and click delete. Hover the mouse pointer
over the Choose a Backdrop icon . Next, click the Upload Backdrop icon

from the list that appears.

Find the Space-background.png file in the Downloads folder, click on it to
select it, then click OK. The plain white stage background will change to the
picture of space, and the code area will be replaced by the backdrops area
(Figure 4-11). Here you can draw over the backdrop, but for now just click on
the tab marked Code at the top of the Scratch 3 window.

Upload your new sprite by hovering your mouse pointer over the Choose a
Sprite icon . Next, click the Upload Sprite icon at the top of the list that
appears. Find the file Astronaut-Tim.png in the Downloads folder, click to

USER INTERFACE

If you’ve been following this chapter from the start, you should be familiar with the

Scratch 3 user interface. The following project instructions will rely on you knowing

where things are; if you forget where to find something, look back at the picture of the

user interface at the start of this chapter for a reminder.

?

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 69

http://rptl.io/astro-sprite

Figure 4-11 The space background appears on the stage

select it, then click OK. The sprite appears on the stage automatically, but it
might not be in the middle of the stage: click and drag it with the mouse and
drop it so it’s near the lower middle (Figure 4-12).

With your new background and sprite in place, you’re ready to create your
program, so click the Code tab. Start by creating a new variable called time,
making sure that For all sprites is selected before clicking OK. Click on your
sprite — either on the stage or in the sprite pane — to select it, then add a

when clicked block from the Events category to the code area. Next, add
a say Hello! for 2 seconds block from the Looks category, then click on it to
change it to say Hello! British ESA Astronaut Tim Peake here. Are

you ready?

when clicked

say Hello! British ESA Astronaut Tim Peake here. Are you ready? for 2 seconds

Add a wait 1 seconds block from the Control category, then a say Hello!

block. Change this block to say ‘Hit Space!’, then add a reset timer block
from the Sensing category. This controls a special variable built into Scratch

70 · Chapter 4 · Programming with Scratch 3

Figure 4-12 Drag the astronaut sprite to the lower middle of the stage

for timing things and will be used to time how quickly you can react in the
game.

when clicked

say Hello! British ESA Astronaut Tim Peake here. Are you ready? for 2 seconds

wait 1 seconds

say Hit Space!

reset timer

Add a wait until Control block, then drag a key space pressed? Sensing
block into its white space. This will pause the program until you press the
SPACE key on the keyboard, but the timer will continue to run — counting
exactly how much time has passed between the message telling you to ‘Hit
Space!’ and when you actually press the SPACE key.

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 71

when clicked

say Hello! British ESA Astronaut Tim Peake here. Are you ready? for 2 seconds

wait 1 seconds

say Hit Space!

reset timer

wait until key space pressed?

You now need Tim to tell you how long you took to press the SPACE key, but
in a way that’s easy for you to read. To do this, you’ll need a join

Operators block. This takes two values, including variables, and joins them
together one after the other — known as concatenation.

Start with a say Hello! block, then drag and drop a join Opera-
tors block over the word Hello!. Click on apple and type Your reaction

time was — make sure you have a blank space at the end — then drag an-
other Join block over the top of banana in the second box. Drag a timer Re-
porting block from the Sensing category into what is now the middle box,
and type seconds. into the last box — make sure you include a blank space
at the start.

when clicked

say Hello! British ESA Astronaut Tim Peake here. Are you ready? for 2 seconds

wait 1 seconds

say Hit Space!

reset timer

wait until key space pressed?

say join Your reaction time was join timer   seconds

72 · Chapter 4 · Programming with Scratch 3

Finally, drag a set my variable to 0 Variables block onto the end of your se-
quence. Click on the drop-down arrow next to ‘my variable’ and click on
‘time’ from the list, then replace the 0 with a timer Reporting block from
the Sensing category. Your game is now ready to test by clicking on the green
flag above the stage. Get ready, and as soon as you see the message ‘Hit
Space!’, press the SPACE key as quickly as you can (Figure 4-13).

See if you can beat our score!

Figure 4-13 Time to play the game!

You can extend this project further by having it calculate roughly how far the
International Space Station has travelled in the time it took you to press the
SPACE key, based on the station’s published speed of seven kilometres per
second. First, create a new variable called distance. Notice how the blocks
in the Variables category automatically change to show the new variable, but
the existing time variable blocks in your program remain the same.

Add a set distance to 0 block, then drag a * Operators block —
which indicates multiplication — over the 0. Drag a time Reporting block
over the first blank space, then type the number 7 in the second space. When
you’re finished, your combined block reads set distance to time * 7 . This will
take the time it took you to press the SPACE key and multiply it by seven, to
get the distance in kilometres the ISS has travelled.

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 73

when clicked

say Hello! British ESA Astronaut Tim Peake here. Are you ready? for 2 seconds

wait 1 seconds

say Hit Space!

reset timer

wait until key space pressed?

say join Your reaction time was join timer   seconds

set time to timer

set distance to time * 7

Add a wait 1 seconds block and change it to 4. Next, drag another
say Hello! block onto the end of your sequence and add two join blocks,

just as you did before. In the first space, over apple, type In that time

the ISS travels around , remembering a space at the end; in the banana

space, type kilometres., again remembering a space at the start.

Finally, drag a join Operators block into the middle blank space, then drag
a distance Reporting block into the new blank space it creates. The join

block rounds numbers up or down to their nearest whole number, so instead
of a hyper-accurate but hard-to-read number of kilometres you’ll get an easy-
to-read whole number.

Click the green flag to run your program and see how far the ISS travels in the
time it takes you to hit the SPACE key (Figure 4-14). Remember to save your
program when you’re finished, so you can easily load it again in the future
without having to start from the beginning!

CHALLENGE: CUSTOM ARTWORK

You can click on a sprite or background, then click the Costumes or Backdrops tab to

bring up an editor with drawing tools. Can you draw your own characters and back-

ground and edit the code to have your character say something different?

?

74 · Chapter 4 · Programming with Scratch 3

when clicked

say Hello! British ESA Astronaut Tim Peake here. Are you ready? for 2 seconds

wait 1 seconds

say Hit Space!

reset timer

wait until key space pressed?

say join Your reaction time was join timer   seconds

set time to timer

set distance to time * 7

wait 4 seconds

say join In that time the ISS travels around join distance   kilometres.

Figure 4-14 Tim tells you how far the ISS has travelled

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 75

Project 2: Synchronised swimming
Most games use more than a single button. This project demonstrates that, by
offering two-button control using the left and right arrow keys on the key-
board.

Create a new project and save it as ‘Synchronised swimming’. Click on the
Stage in the stage control section, then click the Backdrops tab at the top
left. Click the Convert to Bitmap button below the backdrop. Choose a water-
like blue colour from the Fill palette and click on the Fill icon . Next, click
on the chequered backdrop to fill it with blue (Figure 4-15).

Figure 4-15 Fill the background with a blue colour

Right-click the cat sprite in the list and click delete. Click the Choose a
Sprite icon to see a list of built-in sprites. Click on the Animals category,
then ‘Cat Flying’ (Figure 4-16), then OK. This sprite also works well for swim-
ming projects.

Click the new sprite, then drag two when space key pressed Events blocks in-
to the code area. Click on the small down-arrow next to the word ‘space’ on
the first block and choose left arrow from the list of possible options. Drag
a turn ccw 15 degrees Motion block under your when left arrow key pressed

block, then do the same with your second Events block except choosing right
arrow from the list and using a turn cw 15 degrees Motion block.

76 · Chapter 4 · Programming with Scratch 3

Figure 4-16 Choose a sprite from the library

when left arrow key pressed

turn 15 degrees

when right arrow key pressed

turn 15 degrees

Press the left or right arrow key to test your program. You’ll see the cat sprite
turning as you do, matching the direction you’re choosing on the keyboard.
Notice how you didn’t need to click on the green flag this time? This is be-
cause the Events trigger blocks you have used are always active, even when
the program isn’t ‘running’ in the usual sense.

Do the same steps twice again, but this time choosing up arrow and down ar-
row for the Events trigger blocks, then move 10 steps and move -10 steps

for the Motion blocks. Press the arrow keys now and you’ll see your cat can
turn around and swim forwards and backwards too!

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 77

when left arrow key pressed

turn 15 degrees

when right arrow key pressed

turn 15 degrees

when up arrow key pressed

move 10 steps

when down arrow key pressed

move -10 steps

To make the cat sprite’s motion more realistic, you can change how it appears
— known in Scratch terms as a costume. Click on the cat sprite, then click on
the Costumes tab above the blocks palette. Click on the ‘cat flying-a’ cos-
tume and click on the bin icon that appears at its top-right corner to delete
it. Next, click on the ‘cat flying-b’ costume and use the name box at the top
to rename it to ‘right’ (Figure 4-17).

Figure 4-17 Rename the costume as ‘right’

Right-click on the newly renamed ‘right’ costume and click duplicate to cre-
ate a copy. Click on this copy to select it, then click the Select icon . Next,
click the Flip Horizontal icon . Finally, rename the duplicate costume to
‘left’ (Figure 4-18). You’ll finish with two ‘costumes’ for your sprite, which are

78 · Chapter 4 · Programming with Scratch 3

exact mirror images: one called ‘right’ with the cat facing right, and one called
‘left’ with the cat facing left.

Figure 4-18 Duplicate the costume, flip it, and name it ‘left’

Click on the Code tab above the costume area, then drag two
switch costume to left Looks blocks under your left arrow and right arrow

Events blocks, changing the one under the right arrow block to read
switch costume to right . Try the arrow keys again; the cat now seems to turn

to face the direction it’s swimming.

when left arrow key pressed

switch costume to left

turn 15 degrees

when right arrow key pressed

switch costume to right

turn 15 degrees

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 79

For Olympic-style synchronised swimming, though, we need more swim-
mers, and we need a way to reset the cat sprite’s position. Add a

when clicked Events block, then underneath add a go to x: 0 y: 0 Mo-
tion block — changing the values if necessary — and a point in direction 90

Motion block. Now, when you click the green flag, the cat moves to the mid-
dle of the stage and faces to the right.

when clicked

go to x: 0 y: 0

point in direction 90

To create more swimmers, add a repeat 6 block — changing the default
value of ‘10’ — and add a create clone of myself Control block inside it. To
make it so the swimmers aren’t all swimming in the same direction, add a

turn cw 60 degrees block above the create clone block but still inside the
repeat 6 block. Click the green flag and try the arrow keys now to see your

swimmers come to life!

when clicked

go to x: 0 y: 0

point in direction 90

repeat 6

turn 60 degrees

create clone of myself

To complete the Olympic feel, you’ll need to add some music. Click on the
Sounds tab above the blocks palette, then click the Choose a Sound icon .
Click on the Loops category, then browse through the list (Figure 4-19) until
you find some music you like — we went with ‘Dance Around’. Click on the
OK button to choose the music, then click on the Code tab to open the code
area again.

Add another when clicked Events block to your code area, then add
a forever Control block. Inside this Control block, add a

play sound dance around until done block — remembering to look for the name

80 · Chapter 4 · Programming with Scratch 3

Figure 4-19 Select a music loop from the sound library

of whatever piece of music you chose — and click the green flag to test your
new program. If you want to stop the music, click the stop button (the red oc-
tagon) to stop the program and silence the sound!

when clicked

forever

play sound Dance Around until done

Finally, you can simulate a full dancing routine by adding a new event trigger
to your program. Add a when space key pressed Events block, then a

switch costume to right block. Underneath this, add a repeat 36 block — re-
member to change the default value — and inside this a turn cw 10 degrees

block and a move 10 steps block.

Click the green flag to start the program, then press the SPACE key to try out
the new routine (Figure 4-20), and save your program when you’re finished!

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 81

when left arrow key pressed

switch costume to left

turn 15 degrees

when right arrow key pressed

switch costume to right

turn 15 degrees

when up arrow key pressed

move 10 steps

when down arrow key pressed

move -10 steps

when clicked

go to x: 0 y: 0

point in direction 90

repeat 6

turn 60 degrees

create clone of myself

when clicked

forever

play sound Dance Around until done

when space key pressed

switch costume to right

repeat 36

turn 10 degrees

move 10 steps

CHALLENGE: CUSTOM ROUTINE

Can you create your own synchronised swimming routine using loops? What would

you need to change if you wanted more (or fewer) swimmers? Can you add multiple

swimming routines which can be triggered using different keyboard keys?

?

82 · Chapter 4 · Programming with Scratch 3

Figure 4-20 The finished synchronised swimming routine

Project 3: Archery game
Now you’re getting to be a bit of an expert at Scratch, it’s time to work on
something a little more challenging: a game of archery, where the player must
hit a target with a randomly swaying bow and arrow.

Start by opening the Chromium web browser and typing rptl.io/archery into
the address bar, followed by the ENTER key. The resources for the game are
contained in a zip file, so you’ll need to unzip it. To do so, right-click the file
and select Extract Here. Switch back to Scratch 3 and click on the File menu
followed by Load from your computer. Click on ArcheryResources.sb3 fol-
lowed by the Open button. You’ll be asked if you want to replace the contents
of your current project. If you haven’t saved your changes, click Cancel and
save them, then click OK.

The project you’ve just loaded contains a backdrop and a sprite (Figure 4-21),
but none of the actual code to make a game: adding that is your job. Start
by adding a when clicked block, then a broadcast message1 block. Click
on the down arrow at the end of the block, and then click ‘New Message’
and type in ‘new arrow’ before clicking the OK button. Your block now reads

broadcast new arrow .

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 83

http://rptl.io/archery

Figure 4-21 Resources project loaded for the archery game

when clicked

broadcast new arrow

A broadcast is a message from one part of your program which can be re-
ceived by any other part of your program. To have it actually do something,
add a when I receive message1 block, and again change it to read

when I receive new arrow . This time you can just click on the down arrow and
choose new arrow from the list; you don’t have to create the message again.

Below your when I receive new arrow block, add a go to x: -150 y: -150 block
and a set size to 400 % block. Remember that these aren’t the default values
for those blocks, so you’ll need to change them once you’ve dragged them
onto the code area. Click on the green flag to see what you’ve done so far:
the arrow sprite, which the player uses to aim at the target, will jump to the
bottom-left of the stage and quadruple in size.

84 · Chapter 4 · Programming with Scratch 3

when I receive new arrow

go to x: -150 y: -150

set size to 400 %

To give the player a challenge, add movement to simulate the swaying of the
bow as it’s drawn back and the archer aims. Drag a forever block, followed
by a glide 1 seconds to x: -150 y: -150 block. Edit the first white box to say 0.5

instead of 1, then put a pick random -150 to 150 Operators block in each of
the other two white boxes. This means the arrow will drift around the stage
in a random direction, for a random distance — making it far harder to hit the
target!

when I receive new arrow

go to x: -150 y: -150

set size to 400 %

forever

glide 0.5 secs to x: pick random -150 to 150 y: pick random -150 to 150

Click the green flag again, and you’ll see what that block does: your arrow
sprite is now drifting around the stage, covering different parts of the target.
At the moment, though, you have no way to shoot the arrow at the target.

Drag a when space key pressed block into your code area, followed by a
stop all Control block. Click the down arrow at the end of the block and

change it to a stop other scripts in sprite block.

when space key pressed

stop other scripts in sprite

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 85

If you’d stopped your program to add the new blocks, click the green flag to
start it again and then press the SPACE key: you’ll see the arrow sprite stop
moving. That’s a start, but you need to make it look like the arrow is flying
to the target. Add a repeat 50 block followed by a change size by -10 block,
then click the green flag to test your game again. This time, the arrow appears
to be flying away from you and towards the target.

when space key pressed

stop other scripts in sprite

repeat 50

change size by -10

To make the game more fun, you should add a way to keep score. Still in
the same stack of blocks, add an if then block — making sure it’s below the

repeat 50 block and not inside it — with a touching color? Sensing block
in its diamond-shaped gap. To choose the correct colour, click on coloured
box at the end of the Sensing block, then the Eye Dropper icon . Next, click
on the yellow bull’s-eye of your target on the stage.

Add a start sound cheer block and a say 200 points for 2 seconds block inside
the if then block so the player knows they scored. Finally, add a

broadcast new arrow block to the very bottom of the block stack, below and
outside the if then block, to give the player another arrow each time they
fire one. Click the green flag to start your game and try to hit the yellow
bull’s-eye: when you do, you’ll be rewarded with a cheer from the crowd and
a 200-point score!

The game works at this point, but may be a little too challenging. Using what
you’ve learnt in this chapter, try adding scores for hitting parts of the target
other than the bull’s-eye: 100 points for red, 50 points for blue, and so on.

For more Scratch projects to try, see Appendix D, Further reading.

86 · Chapter 4 · Programming with Scratch 3

when clicked

broadcast new arrow

when I receive new arrow

go to x: -150 y: -150

set size to 400 %

forever

glide 0.5 secs to x: pick random -150 to 150 y: pick random -150 to 150

when space key pressed

stop other scripts in sprite

repeat 50

change size by -10

if touching color ? then

start sound cheer

say 200 points for 2 seconds

broadcast new arrow

CHALLENGE: CAN YOU IMPROVE IT?

How would you make the game easier? How would you make it more difficult? Can

you use variables to have the player’s score increase as they fire more arrows? Can

you add a countdown timer to put more pressure on the player?

?

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 87

Chapter 5

Programming with Python
Now you’ve got to grips with Scratch, we’ll show you how to do
text-based coding with Python.

Named after the Monty Python comedy troupe, Guido van Rossum’s Python
has grown from a hobby project first released to the public in 1991 to a much-
loved programming language that powers a wide range of projects. Unlike the
visual environment of Scratch, Python is text based: you write instructions,
using a simplified language and specific format, which the computer then
carries out.

Python is a great next step for those who have already used Scratch, offering
increased flexibility and a more traditional programming environment. That’s
not to say it’s difficult to learn, though: with a little practice, anyone can write
Python programs for everything from simple calculations through to surpris-
ingly complicated games.

This chapter builds on terms and concepts introduced in Chapter 4, Program-
ming with Scratch 3. If you haven’t worked through the exercises in that
chapter yet, you’ll find this chapter easier to follow if you go back and do so
first.

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 89

Introducing the Thonny Python IDE

Thonny’s ‘Simple Mode’ interface uses a bar of friendly icons (A) as its menu,
allowing you to create, save, load, and run your Python programs, as well as
test them in various ways. The script area (B) is where your Python programs
are written, and is split into a main area for your program and a small side
margin for showing line numbers (C). The Python shell (D) allows you to type
individual instructions which are then run as soon as you press the ENTER
key, and also provides information about running programs.

Your first Python program: Hello, World!
Like the other pre-installed programs on Raspberry Pi, Thonny is available
from the menu: click on the Raspberry Pi icon, move the cursor to the Pro-
gramming section, and click on Thonny Python IDE. After a few seconds, the
Thonny user interface (Simple Mode by default) will load.

A Toolbar

B Script area

C Line numbers

D Python shell

THONNY MODES

Thonny has two main versions of its interface: ‘Regular Mode’ and a ‘Simple Mode’,

which is better for beginners. This chapter uses Simple Mode, which is loaded by de-

fault when you open Thonny from the Programming section of the Raspberry Pi menu.

?

90 · Chapter 5 · Programming with Python

Thonny is a package known as an integrated development environment (IDE),
a complicated-sounding name with a simple explanation. It gathers together,
or integrates, all the different tools you need to write, or develop, software
into a single user interface, or environment. There are lots of IDEs available,
some of which support many different programming languages, while others,
like Thonny, focus on supporting a single language.

Unlike Scratch, which gives you visual building blocks as a basis for your pro-
gram, Python is a more traditional programming language where everything
is written down. Start your first program by clicking on the Python shell area
at the bottom of the Thonny window, then type the following instruction be-
fore pressing the ENTER key:

print("Hello, World!")

When you press ENTER, you’ll see that your program begins to run instant-
ly. Python will respond, in the same shell area, with the message ‘Hello,
World!’ (Figure 5-1), just as you asked. That’s because the shell is a direct
line to the Python interpreter, whose job it is to look at your instructions and
interpret what they mean. This is known as interactive mode, and you can
think of it like a face-to-face conversation with someone: as soon as you fin-
ish what you’re saying, the other person will respond, then wait for whatever
you say next.

Figure 5-1 Python prints the ‘Hello, World!’ message in the shell area

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 91

You don’t have to use Python in interactive mode, though. Click on the script
area in the middle of the Thonny window, then type your instruction again:

print("Hello, World!")

When you press the ENTER key this time, all you get is a new, blank line
in the script area. To make this version of your program work, you have to
click the Run icon in the Thonny toolbar. Before you do that, though, you
should click the Save icon . Give your program a descriptive name, like
Hello World.py and click the OK button. Once you’ve saved your program,
click the Run icon and you’ll see two messages appear in the Python shell
area (Figure 5-2):

>>> %Run 'Hello World.py'

Hello, World!

The first of these lines is an instruction from Thonny telling the Python in-
terpreter to run the program. The second is the output of the program — the
message you told Python to print. Congratulations: you’ve now written and
run your first Python program in both interactive and script modes!

SYNTAX ERROR

If your program doesn’t run but instead prints a ‘syntax error’ message to the shell

area, there’s a mistake somewhere in what you’ve written. Python needs its instruc-

tions to be written in a very specific way: if you miss a bracket or a quotation mark,

spell ‘print’ wrong or give it a capital P, or add extra symbols somewhere in the in-

struction, your program won’t run. Try typing the instruction again, and make sure it

matches the version in this book before pressing the ENTER key.

CHALLENGE: NEW MESSAGE

Can you change the message the Python program prints as its output? If you wanted

to add more messages, would you use interactive mode or script mode? What hap-

pens if you remove the brackets or the quotation marks from the program and then try

to run it?

?

?

92 · Chapter 5 · Programming with Python

Figure 5-2 Running your simple program

Next steps: loops and code indentation
Just as Scratch uses stacks of jigsaw-like blocks to control which bits of the
program are connected to which other bits, Python has its own way of con-
trolling the sequence in which its programs run: indentation. Create a new
program by clicking on the New icon in the Thonny toolbar. You won’t lose
your existing program; instead, Thonny will create a new tab above the script
area. Start by typing in the following:

print("Loop starting!")

for i in range(10):

The first line prints a simple message to the shell, just like your Hello World
program. The second begins a definite loop, which works in the same way as
in Scratch: a counter, i, is assigned to the loop and is given a series of num-
bers to count. This is the range instruction, which tells the program to start
at the number 0 and work upwards towards, but never reaching, the number
10. The colon symbol (:) tells Python that the next instruction should be part
of the loop.

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 93

In Scratch, the instructions to be included in the loop are literally included
inside the C-shaped block. Python uses a different approach: indenting code.
The next line starts with four blank spaces, which Thonny should have added
when you pressed ENTER after line 2:

print("Loop number", i)

The blank spaces push this line inwards compared to the other lines. This in-
dentation is how Python tells the difference between instructions outside the
loop and instructions inside the loop; the indented code is nested.

You’ll notice that when you pressed ENTER at the end of the third line, Thon-
ny automatically indented the next line, assuming it would be part of the
loop. To remove this, just press the BACKSPACE key once before typing the
fourth line:

print("Loop finished!")

Your four-line program is now complete. The first line sits outside the loop
and will only run once. The second line sets up the loop; the third sits inside
the loop and will run once for each time the loop loops. The fourth line sits
outside the loop once again.

print("Loop starting!")

for i in range(10):

print("Loop number", i)

print("Loop finished!")

Click the Save icon , save the program as Indentation.py, then click the
Run icon and look at the shell area for your program’s output (Figure 5-3):

Loop starting!

Loop number 0

Loop number 1

Loop number 2

Loop number 3

Loop number 4

Loop number 5

Loop number 6

Loop number 7

Loop number 8

Loop number 9

Loop finished!

94 · Chapter 5 · Programming with Python

Figure 5-3 Executing a loop

Indentation is a powerful and integral part of Python, and it’s also one of
the most common reasons for a program to not work as you expect. When
looking for problems in a program, a process known as debugging, always
double-check the indentation — especially when you begin nesting loops
within loops.

Python also supports infinite loops, which run without end. To change your
program from a definite loop to an infinite loop, edit line 2 to read:

while True:

If you click the Run icon now, you’ll get an error: name 'i' is not de-

fined. This is because you’ve deleted the line which created and assigned a
value to the variable i.

COUNT FROM ZERO

Python is a zero-indexed language — meaning it starts counting from 0, not from 1 —

which is why your program prints the numbers 0 through 9 rather than 1 through 10. If

you wanted to, you could change this behaviour by switching the range(10) instruc-

tion to range(1, 11) — or any other numbers you like.

?

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 95

To fix this, simply edit line 3 so it no longer uses the variable:

print("Loop running!")

Click the Run icon , and — if you’re quick — you’ll see the ‘Loop start-

ing!’ message followed by a never-ending string of ‘Loop running’ messages
(Figure 5-4). The ‘Loop finished!’ message will never print, because the
loop has no end: every time Python finishes printing the ‘Loop running!’
message, it goes back to the beginning of the loop and prints it again.

Figure 5-4 An infinite loop keeps going until you stop the program

Click the Stop icon on the Thonny toolbar to tell the program to stop what
it’s doing — known as interrupting the program. You’ll see a message appear in
the Python shell area, and the program will stop without ever reaching line 4.

CHALLENGE: LOOP THE LOOP

Can you change the loop back into a definite loop? Can you add a second definite

loop to the program? How would you add a loop within a loop, and how would you ex-

pect that to work?

?

96 · Chapter 5 · Programming with Python

Conditionals and variables
Variables in Python, as in all programming languages, exist for more than just
controlling loops. Start a new program by clicking the New icon on the
Thonny menu, then type the following into the script area:

userName = input("What is your name? ")

Click the Save icon , save your program as Name Test.py, click Run , and
watch what happens in the shell area. You should see a prompt asking for
your name. Type your name into the shell area, followed by ENTER. Because
that’s the only instruction in your program, nothing else will happen (Figure
5-5). If you want to do anything with the data you placed into the variable,
you’ll need more lines in your program.

Figure 5-5 The input function lets you ask a user for some text input

To make your program do something useful with the name, add a conditional
statement by typing the following:

if userName == "Clark Kent":

print("You are Superman!")

else:

print("You are not Superman!")

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 97

Remember that when Thonny sees that your code needs to be indented, it will
do so automatically — but it doesn’t know when your code needs to stop being
indented, so you’ll have to delete the spaces yourself before you type else:.

Click Run and enter your name into the shell area. Unless your name hap-
pens to be Clark Kent, you’ll see the message ‘You are not Superman!’. Click
Run again, and this time type the name ‘Clark Kent’ — making sure to write
it exactly as in the program, with a capital C and K. This time, the program
recognises that you are, in fact, Superman (Figure 5-6).

Figure 5-6 Shouldn’t you be out saving the world?

The == symbols tell Python to do a direct comparison, looking to see if the
variable userName matches the text — known as a string — in your program.
If you’re working with numbers, there are other comparisons you can make: >
to see if a number is greater than another number, < to see if it’s less than, =>
to see if it’s equal to or greater than, and =< to see if it’s equal to or less than.
There’s also !=, which means not equal to; it’s the exact opposite of ==. These
symbols are known as comparison operators.

USING = AND ==

The key to using variables is to learn the difference between = and ==. Remember: =

means ‘make this variable equal to this value’, while == means ‘check to see if the

variable is equal to this value’. Mixing them up is a sure way to end up with a program

that doesn’t work!

?

98 · Chapter 5 · Programming with Python

You can also use comparison operators in loops. Delete lines 2 to 5, then type
the following in their place:

while userName != "Clark Kent":

print("You are not Superman - try again!")

userName = input ("What is your name? ")

print("You are Superman!")

Click the Run icon again. This time, instead of quitting, the program will
keep asking for your name until it confirms that you are Superman (Figure
5-7) — sort of like a very simple password. To get out of the loop, either type
‘Clark Kent’ or click the Stop icon on the Thonny toolbar. Congratulations:
you now know how to use conditionals and variables!

Figure 5-7 It will keep asking for your name until you say it’s ‘Clark Kent’

CHALLENGE: ADD MORE QUESTIONS

Can you change the program to ask more than one question, storing the answers in

multiple variables? Can you make a program which uses conditionals and comparison

operators to print whether a number typed in by the user is higher or lower than 5, like

the program you created in Chapter 4, Programming with Scratch 3?

?

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 99

Project 1: Turtle Snowflakes
Now you understand how Python works, it’s time to play with graphics and
create a snowflake using a tool known as a turtle.

Turtles are robots shaped like their animal namesakes, which are designed
to move in a straight line, turn, and to lift and lower a pen. Simply put, a
turtle — whether physical or digital — will start or stop drawing a line as
it moves. Unlike some other languages, namely Logo and its many variants,
Python doesn’t have a built-in turtle tool, but it does come with a library of
add-on code to give it turtle power. Libraries are bundles of code which add
new instructions to expand the capabilities of Python, and are brought into
your own programs using an import command.

Create a new program by clicking on the New icon , then type the following:

import turtle

When using instructions included in a library, you have to use the library
name followed by a full stop, then the instruction name. That can be annoy-
ing to type out every time, so you can assign an instruction to a variable with
a short name. It could be as short as just one letter, but we thought it might
be nice for it to double as a pet name for the turtle. Type the following:

pat = turtle.Turtle()

To test your program out, you’ll need to give your turtle something to do. Type:

pat.forward(100)

Click the Save icon , save your program as Turtle Snowflakes.py, then click
the Run icon and a new window called ‘Turtle Graphics’ will appear show-
ing the result of your program: your turtle, Pat, will move forwards 100 units,
drawing a straight line (Figure 5-8).

Switch back to the main Thonny window — if it’s hidden behind the Turtle
Graphics window, either click the minimise button on the Turtle Graphics
window or click on the Thonny entry in the task bar at the top of the screen.
Once you’ve brought the Thonny window to the front, click Stop to close
the Turtle Graphics window.

Typing out every single movement instruction to draw something more com-
plex by hand would be tedious, so delete line 3 and create a loop to do the
hard work of creating shapes:

100 · Chapter 5 · Programming with Python

Figure 5-8 The turtle moves forward to draw a straight line

for i in range(2):

pat.forward(100)

pat.right(60)

pat.forward(100)

pat.right(120)

Run your program, and Pat will draw a single parallelogram (Figure 5-9).

To turn that into a snowflake-like shape, click Stop in the main Thonny
window and create a loop around your loop by adding the following as line 3:

for i in range(10):

…and the following at the bottom of your program:

pat.right(36)

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 101

Figure 5-9 By combining turns and movements, you can draw shapes

Your program won’t run as it is, because the existing loop isn’t indented cor-
rectly. To fix that, click on the start of each line in the existing loop — lines 4
through 8 — and press the SPACE key four times to correct the indentation.
Your program should now look like this:

import turtle

pat = turtle.Turtle()

for i in range(10):

for i in range(2):

pat.forward(100)

pat.right(60)

pat.forward(100)

pat.right(120)

pat.right(36)

102 · Chapter 5 · Programming with Python

Click the Run icon , and watch the turtle: it’ll draw a parallelogram, as
before, but when it’s done it’ll turn 36 degrees and draw another, then anoth-
er, and so on until there are ten overlapping parallelograms on the screen —
looking a little like a snowflake (Figure 5-10).

Figure 5-10 Repeating the shape to make a more complex one

While a robotic turtle draws in a single colour on a large piece of paper,
Python’s simulated turtle can use a range of colours. Add the following as a
new line 3 and 4, pushing the existing lines down:

turtle.Screen().bgcolor("blue")

pat.color("cyan")

Run your program again and you’ll see the effect of your new code: the back-
ground colour of the Turtle Graphics window has changed to blue, and the
snowflake is now cyan (Figure 5-11).

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 103

Figure 5-11 Changing the background and snowflake colours

You can also choose the colours randomly from a selection, using the random

library. Go back to the top of your program and insert the following as line 2:

import random

Change the background colour in what is now line 4 from ‘blue’ to ‘grey’, then
create a new variable called colours as a new line 5:

colours = ["cyan", "purple", "white", "blue"]

This type of variable is called a list, and is marked by square brackets. In this
case, the list is filled with possible colours for the snowflake segments, but
you still need to tell Python to choose one each time the loop repeats. At the

104 · Chapter 5 · Programming with Python

very end of the program, enter the following — making sure it’s indented with
four spaces so it forms part of the outer loop, just like the line above it:

pat.color(random.choice(colours))

Click the Run icon and the snowflake-stroke-ninja-star will be drawn
again. This time, though, Python will choose a random colour from your list
as it draws each petal — giving the snowflake a multicolour finish, as shown
in Figure 5-12.

Figure 5-12 Using random colours for the ‘petals’

U.S. SPELLINGS

Many programming languages use American English spellings, and Python is no ex-

ception: the command for changing the colour of the turtle’s pen is spelled color,

and if you spell it the British English way as colour it simply won’t work. Variables,

though, can have any spelling you like — which is why you’re able to call your new vari-

able colours and have Python understand.

?

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 105

To make the snowflake look less like a ninja star and more like an actual
snowflake, add a new line 6, directly below your colours list, and type the
following:

pat.penup()

pat.forward(90)

pat.left(45)

pat.pendown()

The penup and pendown instructions would move a physical pen off and on
to the paper if used with a turtle robot, but in the virtual world it just tells
your turtle when to stop and start drawing lines. This time, rather than using
a loop, you’re going to create a function — a segment of code which you can
call at any time, essentially creating your very own Python instruction.

Start by deleting the code for drawing your parallelogram-based snowflakes:
that’s everything between and including the pat.color("cyan") instruction
on line 10 through to pat.right(36) on line 17. Leave the pat.color(ran-

dom.choice(colours)) instruction, but add a hash symbol (#) at the start of
the line. This is known as commenting out an instruction, which means that
Python will ignore it when the program runs. You can use comments to add
explanations to your code, which will make it a lot easier to understand when
you come back to it a few months later, or if you send it on to someone else.

Create your function, which we’ll call branch, by typing the following in-
struction onto line 10, below pat.pendown():

def branch():

This defines your function by giving it a name, branch. When you press the
ENTER key, Thonny will automatically add indentation for the function’s in-
structions. Type the following, making sure to pay close attention to indenta-
tion — because at one point you’re going to be nesting code three indentation
levels deep!

for i in range(3):

for i in range(3):

pat.forward(30)

pat.backward(30)

pat.right(45)

pat.left(90)

pat.backward(30)

pat.left(45)

pat.right(90)

pat.forward(90)

106 · Chapter 5 · Programming with Python

Finally, create a new loop at the bottom of your program — but above the
commented-out color line — to run, or call, your new function:

for i in range(8):

branch()

pat.left(45)

Your finished program should look like this:

import turtle

import random

pat = turtle.Turtle()

turtle.Screen().bgcolor("grey")

colours = ["cyan", "purple", "white", "blue"]

pat.penup()

pat.forward(90)

pat.left(45)

pat.pendown()

def branch():

for i in range(3):

for i in range(3):

pat.forward(30)

pat.backward(30)

pat.right(45)

pat.left(90)

pat.backward(30)

pat.left(45)

pat.right(90)

pat.forward(90)

for i in range(8):

branch()

pat.left(45)

pat.color(random.choice(colours))

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 107

Click on Run and watch the graphics window as Pat draws based on your
instructions. Congratulations: your snowflake now looks a lot more like a
snowflake (Figure 5-13)!

Figure 5-13 Extra branches make it look like a snowflake

CHALLENGE: WHAT’S NEXT?

Can you use your commented-out instruction to have the branches of the snowflake

drawn in different colours? Can you create a ‘snowflake’ function, and use it to draw

lots of snowflakes on the screen? Can you make your program change the size and

colour of the snowflakes at random?

?

108 · Chapter 5 · Programming with Python

Project 2: Scary Spot the Difference
Python can handle pictures and sounds as well as turtle-based graphics,
and those can be used to great effect as a prank on your friends — a spot-
the-difference game with a scary secret at its heart, perfect for Halloween!

This project needs two images — your spot-the-difference image plus a
‘scary’ surprise image — and a sound file. Click on the Raspberry Pi icon
to load the Raspberry Pi menu, choose the Internet category, and click on
Chromium Web Browser. Once it’s open, type rptl.io/spot-pic into the ad-
dress bar followed by the ENTER key. Right-click on the picture and click on
Save image as, choose the Home folder from the list on the left-hand side,
then click Save. Click back on Chromium’s address bar, then type rptl.io/
scary-pic followed by the ENTER key. As before, right-click the picture, click
Save image as, choose the Home folder, then click Save.

To get the sound file, click back into the address bar and type rptl.io/scream
followed by the ENTER key. This file — the sound of a scream to give your
player a real surprise — will download automatically. It needs to be moved to
the Home folder before you can use it. Right-click on the en_images_….wav
block in the bottom-left of the Chromium window then click Show in folder.
Right-click on the file scream.wav in the file manager window that appears,
then click Cut. Finally, click on Home Folder at the top-left of the file manag-
er, right-click in any empty space in the large file viewing window on the right,
and click Paste. You can now close the Chromium and file manager windows.

Click the New icon in the Thonny toolbar to begin a new project. As before,
you’re going use a library to extend Python’s capabilities. This time it’s the
pygame library, which, as the name suggests, was created with games in mind.
Type the following:

import pygame

You’ll need some parts from other libraries and a subsection of the Pygame
library too. Import these by typing the following:

from pygame.locals import *

from time import sleep

from random import randrange

The from instruction works differently to the import instruction by allowing
you to import only the parts of a library you need rather than the whole li-
brary. Next, you need to set up Pygame; this is called initialisation. Pygame

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 109

http://rptl.io/spot-pic
http://rptl.io/scary-pic
http://rptl.io/scary-pic
http://rptl.io/scream

needs to know the width and height of the player’s monitor or TV, known as
its resolution. Type the following:

pygame.init()

width = pygame.display.Info().current_w

height = pygame.display.Info().current_h

The final step in setting up Pygame is to create its main window, which
Pygame calls a screen. Type the following:

screen = pygame.display.set_mode((width, height))

pygame.display.update()

Your code goes here

pygame.quit()

Note the commented line in the middle: this is where your program will go.
For now, though, click the Save icon , save your program as Spot the Dif-
ference.py, then click the Run icon and watch. Pygame will create a win-
dow, fill it with a black background, and then almost immediately close the
window as it reaches the instruction to quit. Aside from a short message in
the shell (Figure 5-14), the program hasn’t achieved much so far.

Figure 5-14 Your program is functional, but doesn’t do much yet

To display your spot-the-difference image, delete the comment above
pygame.quit() and type the following in the space:

110 · Chapter 5 · Programming with Python

difference = pygame.image.load('spot_the_diff.png')

To make sure the image fills the screen, you need to scale it to match your
player’s monitor or TV’s resolution. Type the following:

difference = pygame.transform.scale(difference, (width, height))

Now that the image is in memory, you need to tell Pygame to actually display
it on the screen — a process known as blitting, or a bit block transfer. Type the
following:

screen.blit(difference, (0, 0))

pygame.display.update()

The first of these lines copies the image onto the screen, starting at the top-
left corner; the second tells Pygame to redraw the screen. Without this sec-
ond line, the image will be in the correct place in memory, but you’ll never
see it!

Click the Run icon , and the image, shown in Figure 5-15, will briefly ap-
pear on screen.

Figure 5-15 Your spot-the-difference image

To have the image on screen for a longer period of time, add the following line
just above pygame.quit():

sleep(3)

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 111

Click the Run icon again, and the image will stay on the screen longer.
Add your surprise image by typing the following just below the line
pygame.display.update():

zombie = pygame.image.load('scary_face.png')

zombie = pygame.transform.scale(zombie, (width, height))

Add a delay, so the zombie image doesn’t appear right away:

sleep(3)

Then blit the image to the screen and update to show it to the player:

screen.blit(zombie, (0,0))

pygame.display.update()

Click the Run icon and watch what happens: Pygame will load your spot-
the-difference image, but after three seconds it will be replaced with the
scary zombie (Figure 5-16)!

Figure 5-16 It’ll give someone a scary surprise

Having the delay set at three seconds makes things a bit too predictable,
though. Change the line sleep(3) above screen.blit(zombie, (0,0)) to:

sleep(randrange(5, 15))

112 · Chapter 5 · Programming with Python

This picks a random number between 5 and 15 and delays the program for
that long. Next, add the following line just above your sleep instruction to
load the scream sound file:

scream = pygame.mixer.Sound('scream.wav')

Type the following on a new line after your sleep instruction to start playing
the sound. It should kick in just ahead of the scary image actually being
shown to the player:

scream.play()

Finally, tell Pygame to stop playing the sound by typing the following line
just above pygame.quit():

scream.stop()

Click the Run icon and admire your handiwork: after a few seconds of
innocent spot-the-difference fun, your scary zombie will appear alongside a
blood-curdling shriek — sure to give your friends a fright! If you find that the
zombie picture appears before the sound starts playing, you can compensate
by adding a small delay just after your scream.play() instruction and before
your screen.blit instruction:

sleep(0.4)

Your finished program should look like this:

import pygame

from pygame.locals import *

from time import sleep

from random import randrange

pygame.init()

width = pygame.display.Info().current_w

height = pygame.display.Info().current_h

screen = pygame.display.set_mode((width, height))

pygame.display.update()

difference = pygame.image.load('spot_the_diff.png')

difference = pygame.transform.scale(difference, (width, height))

screen.blit(difference, (0, 0))

pygame.display.update()

zombie = pygame.image.load('scary_face.png')

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 113

zombie = pygame.transform.scale (zombie, (width, height))

scream = pygame.mixer.Sound('scream.wav')

sleep(randrange(5, 15))

scream.play()

screen.blit(zombie, (0,0))

pygame.display.update()

sleep(3)

scream.stop()

pygame.quit()

Now all that’s left to do is to invite your friends to play spot-the-difference —
and to make sure their speakers are turned up, of course!

Project 3: Text Adventure
Now that you’re getting the hang of Python, it’s time to use Pygame to make
something a little more complicated: a fully-functional text-based maze
game based on classic text adventures. Also known as interactive fiction,
these games date back to when computers couldn’t handle complex graphics,
but they still have their fans who argue that no graphics will ever be as vivid
as those you have in your imagination.

This program is quite a bit more complex than the others in this chapter. To
make things easier you will start with a partially-written version. Open the
Chromium Web Browser and go to rptl.io/text-adventure.

Chromium will load the code for the program in the browser. Right-click
the browser page, choose Save As, and save the file as text-adventure.py to
your Downloads folder, but it may warn you that this type of file — a Python
program — could harm your computer. You’ve downloaded the file from a
trusted source, so click on the Keep button if the warning message appears
at the bottom of the screen. Go back to Thonny, then click the Load icon

. Find the file, text-adventure.py, in your Downloads folder and click the
Load button.

CHALLENGE: ALTER THE LOOK

Can you change the images to make the prank more appropriate for other events, like

Christmas? Can you draw your own spot-the-difference and scary images (using a

graphics editor such as GIMP)? Could you track the user clicking on a difference to

make it more convincing?

?

114 · Chapter 5 · Programming with Python

http://rptl.io/text-adventure

Start by clicking the Run icon to familiarise yourself with how a text ad-
venture works. The game’s output appears in the shell area at the bottom of
the Thonny window. If necessary, you can make the Thonny window larger
by clicking on the maximise button to make it easier to read.

As it stands now, the game is very simple: there are two rooms and no objects.
The player starts in the Hall, the first of the two rooms. To go to the Kitchen,
simply type ‘go south’ followed by the ENTER key (Figure 5-17). When
you’re in the Kitchen, you can type ‘go north’ to return to the Hall. You can
also try typing ‘go west’ and ‘go east’, but as there aren’t any rooms in those
directions the game will show you an error message.

Figure 5-17 There are only two rooms so far

Press the Stop icon to stop the program, then scroll down to line 30 of the
program in the script area to find a variable called rooms. This type of vari-
able is known as a dictionary, and it defines the rooms, their exits, and which
room a given exit leads to.

To make the game more interesting, let’s add another room: a Dining Room to
the east of the Hall.

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 115

Find the rooms variable in the scripts area, and extend it by adding a comma
symbol (,) after the } on line 38, then typing the following:

'Dining Room' : {

'west' : 'Hall'

}

You’ll also need a new exit in the Hall, as one isn’t automatically created for
you. Go to the end of line 33, add a comma, then add the following line:

'east' : 'Dining Room'

Click the Run icon and visit your new room: type ‘go east’ while in the
Hall to enter the Dining Room (Figure 5-18), and type ‘go west’ while in the
Dining Room to re-enter the Hall. Congratulations: you’ve made a room of
your own!

Figure 5-18 You have added another room

Empty rooms aren’t much fun, though. To add an item to a room, you need
to modify that room’s dictionary. Click the Stop icon to stop the program.
Find the Hall dictionary in the scripts area, add a comma to the end of the
line 'east' : 'Dining Room', press ENTER, then type this line:

'item' : 'key'

116 · Chapter 5 · Programming with Python

Click the Run icon again. This time, the game will tell you that you can see
your new item: a key. Type ‘get key’ (Figure 5-19) to pick it up and add it to
the list of items you’re carrying — known as your inventory. Your inventory
stays with you as you travel from room to room.

Figure 5-19 The collected key is added to your inventory

Click the Stop icon and make the game even more interesting by adding a
monster to avoid. Find the Kitchen dictionary entry, and add a ‘monster’ item
in the same way as you added the ‘key’ item — remembering to add a comma
to the end of the line above:

'item' : 'monster'

You need to add some logic to enable the monster to attack the player. Scroll
to the bottom of the program in the script area and add the following lines —
including the comment, marked with a hash symbol, which will help you un-
derstand the program if you come back to it another day. Be sure to indent
the lines and type everything between if and the colon (:) on one line:

player loses if they enter a room with a monster

if 'item' in rooms[currentRoom]

and 'monster' in rooms[currentRoom]['item']:

print('A monster has got you... GAME OVER!')

break

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 117

Click the Run icon and try going into the Kitchen (Figure 5-20) — the mon-
ster won’t be too impressed when you do!

Figure 5-20 Never mind rats, there’s a monster in the kitchen

To turn this adventure into a proper game, you should add more items, anoth-
er room, and the ability to ‘win’ by leaving the house with all the items safely
stashed in your inventory. Start by adding another room as before with the
Dining Room — only this time, it’s a Garden. Add an exit from the Dining

Room dictionary, remembering to add a comma to the end of the line above:

'south' : 'Garden'

Then add your new room to the main rooms dictionary, again remembering to
add a comma after the } on the line above:

'Garden' : {

'north' : 'Dining Room'

}

Add a ‘potion’ object to the Dining Room dictionary, again remembering to
add the necessary comma to the line above:

'item' : 'potion'

118 · Chapter 5 · Programming with Python

Finally, scroll to the bottom of the program and add the logic required to
check if the player has all the items and, if so, tell them they’ve won the game
(be sure indent the lines and to type everything between if and the colon (:)
on one line):

player wins if they get to the garden with a key and a potion

if currentRoom == 'Garden' and 'key' in inventory

and 'potion' in inventory:

print('You escaped the house... YOU WIN!')

break

Click the Run icon and try to finish the game by picking up the key and
the potion before going to the garden. Remember not to enter the Kitchen,
because that’s where the monster is!

As a last tweak for the game, add some instructions telling the player how
to complete the game. Scroll to the top of the program, where the function
showInstructions() is defined, and add the following:

Get to the Garden with a key and a potion

Avoid the monsters!

Run the game one last time, and you’ll see your new instructions appear at
the very start. Congratulations, you’ve made an interactive text-based maze
game!

CHALLENGE: EXPAND THE GAME

Can you add more rooms to make the game last longer? Can you add an item to pro-

tect you from the monster? How would you add a weapon to slay the monster? Can

you add rooms that are above and below the existing rooms, accessed by stairs?

?

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 119

Chapter 6

Physical computing with
Scratch and Python
There’s more to coding than doing things on screen — you can
also control electronic components connected to your Rasp-
berry Pi’s GPIO pins.

When people think of ‘programming’ or ‘coding’, they’re usually — and natu-
rally — thinking about software. Coding can be about more than just software,
though: it can also affect the real world through hardware. This is known as
physical computing.

As the name suggests, physical computing is all about controlling things in
the real world with your programs: using hardware alongside software. When
you set the program on your washing machine, change the temperature on
your programmable thermostat, or press a button at traffic lights to cross the
road safely, you’re using physical computing.

Raspberry Pi is a great device for learning about physical computing thanks
to one key feature: the general-purpose input/output (GPIO) header.

Introducing the GPIO header
At the top edge of Raspberry Pi’s circuit board, or at the back of Raspberry Pi
400, you’ll find two rows of metal pins. This is the GPIO (general-purpose in-
put/output) header and it’s there so you can connect hardware like LEDs and
switches to Raspberry Pi, and control them using programs you create. These
pins can be used for both input and output.

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 121

Raspberry Pi’s GPIO header is made up of 40 male pins as shown in Figure
6-1. Some pins are available for you to use in your physical computing pro-
jects, some pins provide power, and other pins are used to communicate with
add-on hardware like the Sense HAT (see Chapter 7, Physical computing with
the Sense HAT).

Figure 6-1 Raspberry Pi GPIO pinout

Raspberry Pi 400 has the same GPIO header with all the same pins, but it’s
turned upside-down compared to other Raspberry Pi models. Figure 6-2 as-
sumes you’re looking at the GPIO header from the back of Raspberry Pi 400.
Always double-check your wiring when connecting anything to Raspberry Pi
400’s GPIO header — it’s easy to forget, despite the ‘Pin 40’ and ‘Pin 1’ labels
on the case!

Raspberry Pi Zero 2 W has a GPIO header too, but doesn’t have header pins at-
tached. If you want to do physical computing with Raspberry Pi Zero 2 W, or
another model in the Raspberry Pi Zero family, you’ll need to solder the pins
into place using a soldering iron. If that sounds a little adventurous for now,
check with an approved Raspberry Pi reseller for a Raspberry Pi Zero 2 WH
with the header pins already soldered into place for you.

GPIO EXTENSIONS

It’s perfectly possible to use Raspberry Pi 400’s GPIO header as-is, but you may find it

easier to use an extension. With an extension, the pins are brought around to the side

of Raspberry Pi 400, meaning you can check and adjust your wiring without having to

keep going around the back.

Compatible extensions include the Black HAT Hack3r range from pimoroni.com and

the Pi T-Cobbler Plus from adafruit.com.

If you buy an extension, always check how it is wired. Some, like the Pi T-Cobbler Plus,

change the layout of the GPIO pins. When in doubt, always use the manufacturer’s in-

structions rather than the pin diagrams shown in this book.

?

122 · Chapter 6 · Physical computing with Scratch and Python

http://pimoroni.com/
http://adafruit.com/

Figure 6-2 Raspberry Pi 400 GPIO pinout

There are several categories of pin types, each of which has a particular func-
tion:

3V3 3.3 volts power
A permanently-on source of 3.3V power, the same

voltage Raspberry Pi runs at internally

5V5 volts power
A permanently-on source of 5V power, the same

voltage as Raspberry Pi takes in at the USB C power
connector

Ground
(GND)

0 volts ground
A ground connection, used to complete a circuit

connected to power source

GPIO XX
General-purpose
input/output pin

number ‘XX’

The GPIO pins available for your programs, identified
by a number from 2 to 27

ID
EEPROM

Reserved
special-purpose pins

Pins reserved for use with Hardware Attached on
Top (HAT) and other accessories

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 123

Electronic components
The GPIO header is only part of what you’ll need to begin working with
physical computing. You’ll also need some electrical components, the devices
you’ll control from the GPIO header. There are thousands of different compo-
nents available, but most GPIO projects are made using the following com-
mon parts.

Figure 6-3 Common electronic components

WARNING!

Raspberry Pi’s GPIO header is a fun and safe way to experiment with physical comput-

ing, but it must be treated with care. Be careful not to bend the pins when connecting

and disconnecting hardware. Never connect two pins directly together, accidentally or

deliberately, unless expressly told to do so in a project’s instructions. If you do this

you’ll create a short circuit and, depending on the pins, can permanently damage your

Raspberry Pi.

A Breadboard

B Jumper wire

C Momentary switch

D Light-emitting diode (LED)

E Resistor

F Piezoelectric buzzer

!

124 · Chapter 6 · Physical computing with Scratch and Python

A breadboard (A), also known as a solderless breadboard, can make physical
computing projects considerably easier. Rather than having a bunch of sep-
arate components which need to be connected with wires, a breadboard lets
you insert components and have them connected through metal tracks which
are hidden beneath its surface. Many breadboards also include sections for
power distribution, making it even easier to build your circuits. You don’t need
a breadboard to get started with physical computing, but it certainly helps.

Jumper wires (B), also known as jumper leads, connect components to your
Raspberry Pi and, if you’re not using a breadboard, to each other. They are
available in three versions: male-to-female (M2F), which you’ll need to con-
nect your breadboard to the GPIO pins; female-to-female (F2F), which can be
used to connect individual components together if you’re not using a bread-
board; and male-to-male (M2M), which is used to make connections from one
part of a breadboard to another. Depending on your project, you may need all
three types of jumper wire. If you’re using a breadboard, you can usually get
away with just M2F and M2M jumper wires.

A momentary switch (C) is the type of switch you might find on controllers for
a game console. Commonly available with two or four legs — either type will
work with a Raspberry Pi — the push-button is an input device: you can tell
your program to watch out for it being pushed and then perform a task. An-
other common switch type is a latching switch: while a push-button is only
active when you’re holding it down, a latching switch — like a light switch —
activates when you toggle it once, then stays active until you toggle it again.

A light-emitting diode (LED, D) is an output device which you can control di-
rectly from your program. An LED lights up when it’s powered on, and you’ll
find them all over your house: from the small ones which let you know when
you’ve left your washing machine switched on, to the large ones you might
have lighting up your rooms. LEDs are available in a wide range of shapes,
colours, and sizes, but not all are suitable for use with Raspberry Pi: avoid any
which say they are designed for 5V or 12V power supplies.

Resistors (E) are components which control the flow of electrical current and
are available in different values, measured using a unit called ohms (Ω). The
higher the number of ohms, the more resistance is provided. For Raspberry Pi
physical computing projects, their most common use is to protect LEDs from
drawing too much current and damaging themselves or your Raspberry Pi; for
this you’ll want resistors rated at around 330Ω, though many electrical sup-
pliers sell handy packs containing a number of different commonly used val-
ues to give you more flexibility.

A piezoelectric buzzer (F), usually just called a buzzer or a sounder, is another
output device. Whereas an LED produces light, a buzzer produces a buzzing
noise. Inside the buzzer’s plastic housing are a pair of metal plates. When active,

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 125

these plates vibrate against each other to produce the buzzing sound. There are
two types of buzzers: active buzzers and passive buzzers. Make sure to get an
active buzzer, as these are the simplest to use.

Other common electrical components include motors, which need a special
control board before they can be connected to Raspberry Pi, infrared sensors
which detect movement, temperature and humidity sensors which can be
used to predict the weather; and light-dependent resistors (LDRs) — input
devices which operate like a reverse LED by detecting light.

Sellers all over the world provide components for physical computing with
Raspberry Pi, either as individual parts or in kits which provide everything
you need to get started. To find sellers, visit rptl.io/products, click on Rasp-
berry Pi 5, and click the Buy now button to see a list of Raspberry Pi partner
online stores and approved resellers for your country or region.

To complete the projects in this chapter, you should have at least:

▶ 3 × LEDs: red, green, and yellow or amber

▶ 2 × push-button switches

▶ 1 × active buzzer

▶ Male-to-female (M2F) and female-to-female (F2F) jumper wires

▶ Optionally, a breadboard and male-to-male (M2M) jumper wires

Reading resistor colour codes
Resistors come in a wide range of values, from zero-resistance versions which
are effectively just pieces of wire to high-resistance versions the size of your
leg. Very few of these resistors have their values printed on them in numbers.
Instead, they use a special code (Figure 6-4) printed as coloured stripes or
bands around the body of the resistor.

To read the value of a resistor, position it so the group of bands is to the left
and the lone band is to the right. Starting from the first band, look its colour
up in the ‘1st/2nd Band’ column of the table to get the first and second digits.
This example has two orange bands, which both mean a value of ‘3’ for a total
of ‘33’. If your resistor has four grouped bands instead of three, note down the
value of the third band too (for five/six-band resistors, see rptl.io/5-6-band).

Moving onto the last grouped band — the third or fourth — look its colour up
in the ‘Multiplier’ column. This tells you what you need to multiply your cur-
rent number by to get the actual value of the resistor. This example has a brown

126 · Chapter 6 · Physical computing with Scratch and Python

http://rptl.io/products
http://rptl.io/5-6-band

Figure 6-4 Resistor color codes

band, which means ‘×101’. That may look confusing, but it’s simply scientific
notation: ‘×101’ simply means ‘add one zero to the end of your number’. If it
were blue, for ×106’, it would mean ‘add six zeroes to the end of your number’.

Taking 33 from the orange bands, plus the added zero from the brown band,
gives us 330 — which is the value of the resistor, measured in ohms. The final
band, the one on the right, is the tolerance of the resistor. This is simply how
close to its rated value it is likely to be. Cheaper resistors might have a silver
band, indicating a tolerance 10% higher or lower than its rating, or no last band
at all, indicating a tolerance 20% higher or lower. The most expensive resistors
have a grey band, indicating a tolerance within 0.05% of its rating. For hobbyist
projects, accuracy isn’t that important: any tolerance will usually work fine.

If your resistor value goes above 1000 ohms (1000Ω), it is usually rated in kilo-
hms (kΩ); if it goes above a million ohms, those are megohms (MΩ). A 2200Ω
resistor would be written as 2.2kΩ; a 2,200,000Ω resistor would be written as
2.2MΩ.

CAN YOU WORK IT OUT?

What colour bands would a 100Ω resistor have? What colour bands would a 2.2MΩ re-

sistor have? If you wanted to find the cheapest resistors, what colour tolerance band

would you look for?

?

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 127

Your first physical computing program: Hello,
LED!
Just as printing ‘Hello, World’ to the screen is a fantastic first step in learning
a programming language, making an LED light up is the traditional introduc-
tion to learning physical computing. For this project, you’ll need an LED and
a 330 ohm (330Ω) resistor, or as close to 330Ω as you can find, plus female-to-
female (F2F) jumper wires.

Start by checking that your LED works. Turn your Raspberry Pi so the GPIO
header is in two vertical strips to the right-hand side. Connect one end of your
330Ω resistor to the first 3.3V pin (labelled 3V3 in Figure 6-5) using a female-to-
female jumper wire, then connect the other end to the long leg — the posi-
tive lead, or anode — of your LED with another female-to-female jumper wire.
Take a last female-to-female jumper wire, and connect the short leg — the
negative lead, or cathode — of your LED to the first ground pin (labelled GND
in Figure 6-5).

Figure 6-5 Wire your LED to these pins — don’t forget the resistor!

While your Raspberry Pi is on, the LED should light up. If it doesn’t, double-
check your circuit: make sure you haven’t used too high a resistor value, that
all the wires are properly connected, and that you’ve definitely picked the
right GPIO pins to match the diagram. Also check the legs of the LED, as LEDs
will only work one way around: make sure the longer leg is connected to the
positive side of the circuit, and the shorter leg to the negative.

RESISTANCE IS VITAL

The resistor is a vital component in this circuit: it protects your Raspberry Pi and

the LED by limiting the amount of electrical current the LED can draw. Without it, the

LED can pull too much current and burn itself — or your Raspberry Pi — out. When

used like this, the resistor is known as a current-limiting resistor. The exact value of

the resistor you need depends on the LED you’re using, but 330Ω works for most

common LEDs. The higher the value, the dimmer the LED; the lower the value, the

brighter the LED.

Never connect an LED to a Raspberry Pi without a current-limiting resistor, unless you

know the LED has a built-in resistor of appropriate value.

?

128 · Chapter 6 · Physical computing with Scratch and Python

Once your LED is working, it’s time to program it. Disconnect the jumper wire
from the 3.3V pin (labelled 3V3 in Figure 6-6) and connect it to pin 25 of the
GPIO (labelled GP25 in Figure 6-6). The LED will switch off, but don’t worry —
that’s normal.

Figure 6-6 Disconnect the wire from 3V3 and connect it to pin 25
of the GPIO

You are now ready to create a Scratch or Python program to turn your LED on
and off.

LED control in Scratch
Load Scratch 3 and click on the Add Extension icon . Scroll down to find
the Raspberry Pi GPIO extension (Figure 6-7), then click on it. This loads the
blocks you need to control Raspberry Pi’s GPIO header from Scratch 3. You’ll
see the new blocks appear in the blocks palette; when you need them, they’ll
be available in the Raspberry Pi GPIO category.

CODING KNOWLEDGE

The projects in this chapter need you to be comfortable with using Scratch 3 and the

Thonny Python integrated development environment (IDE). If you haven’t already done

so, turn to Chapter 4, Programming with Scratch 3, and Chapter 5, Programming with

Python, and work through those projects first.

If you don’t have Scratch 3 installed already, follow the instructions in “The Recom-

mended Software tool” on page 43 to install it.

WARNING!

At the time of writing, Scratch 3 had not received an update to support Raspberry Pi 5.

If you’re having problems, check for an update (see “Software updates” on page 49). If

no update is available, check this book’s GitHub repository at rptl.io/bg-resources for

status information regarding a forthcoming update.

?

!

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 129

http://rptl.io/bg-resources

Figure 6-7 Add the Raspberry Pi GPIO extension to Scratch 3

Start by dragging a when clicked Events block onto the code area, then
place a green set gpio to output high block underneath it. You’ll need to
choose the number of the pin you’re using: click on the small arrow to open
the drop-down selection and click on 25 to tell Scratch you’re controlling pin
25 of the GPIO.

when clicked

set gpio 25 to output high

Click the green flag to run your program. You’ll see your LED light up.
Congratulations: you’ve programmed your first physical computing project!
Click the red octagon to stop your program: notice how the LED stays lit?
That’s because your program only ever told your Raspberry Pi to turn the
LED on — that’s what the output high part of your set gpio 25 to output high

block means. To turn it off again, click on the down arrow at the end of the
block and choose ‘low’ from the list.

130 · Chapter 6 · Physical computing with Scratch and Python

when clicked

set gpio 25 to output low

Click the green flag again, and this time your program will turn the LED off.
To make things more interesting, add an orange forever Control block and a
couple of orange wait 1 seconds blocks to create a program to flash the LED
on and off every second.

when clicked

forever

set gpio 25 to output high

wait 1 seconds

set gpio 25 to output low

wait 1 seconds

Click the green flag and watch your LED: it will turn on for a second, turn off
for a second, turn on for a second, and keep repeating that pattern until you
click the red octagon to stop it. See what happens when you click the octagon
while the LED is in its on or off states.

CHALLENGE: CAN YOU ALTER IT?

How would you change the program to make the LED stay on for longer? What about

staying off for longer? What’s the smallest delay you can use while still seeing the LED

switch on and off?

?

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 131

LED control in Python
Load Thonny from the Programming section of the Raspberry Pi menu, then
click the New button to start a new project and Save to save it as Hello
LED.py. To use the GPIO pins from Python, you need a library called GPIO
Zero. For this project, you only need the part of the library for working with
LEDs. Import just this section of the library by typing the following into the
Python shell area:

from gpiozero import LED

Next, you need to let GPIO Zero know which GPIO pin the LED is connected
to. Type the following:

led = LED(25)

Together, these two lines give Python the ability to control LEDs connected
to your Raspberry Pi’s GPIO pins and tell it which pin — or pins, if you have
more than one LED in your circuit — to control. To control the LED and switch
it on, type the following:

led.on()

To switch the LED off again, type:

led.off()

Congratulations, you are now controlling your Raspberry Pi’s GPIO pins in
Python! Try typing those two instructions again. If the LED is already off,
led.off() won’t do anything; the same is true if the LED is already on and
you type led.on().

To write your own program, type the following into the script area:

from gpiozero import LED

from time import sleep

led = LED(25)

while True:

led.on()

sleep(1)

led.off()

sleep(1)

132 · Chapter 6 · Physical computing with Scratch and Python

This program imports the LED function from the gpiozero (GPIO Zero) library
and the sleep function from the time library, then constructs an infinite loop
to turn the LED on for a second, turn it off for a second, and repeat. Click the
Run button to see it in action: your LED will begin to flash.

As with the Scratch program, make a note of the program’s behaviour when
you click the Stop button while the LED is on, and observe what happens if
you click while the LED is off.

Using a breadboard
The next projects in this chapter will be much easier to complete if you’re us-
ing a breadboard (Figure 6-8) to hold the components and make the electrical
connections.

Figure 6-8 A solderless breadboard

A breadboard is covered with holes which are spaced 2.54mm apart to match
most components. Under these holes are metal strips (terminals) which act
like the jumper wires you’ve been using until now. These run in columns on
the board, with most boards having a gap down the middle to split them in
two halves. Many breadboards also have letters going up the left side and
numbers on the top and bottom. These allow you to find a particular hole: A1
is the bottom-left corner, B1 is the hole just above it, while B2 is one hole to
the right. A1 is connected to B1 by the hidden metal strips, but no number
hole is ever connected to a different number hole unless you add a jumper
wire yourself.

CHALLENGE: LONGER LIGHT-UP

How would you change the program to make the LED stay on for longer? What about

staying off for longer? What’s the smallest delay you can use while still seeing the LED

switch on and off?

?

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 133

Larger breadboards also have strips of holes along the top and bottom, typi-
cally marked with red and black or red and blue stripes. These are the power
rails, and are designed to make wiring easier: you can connect a single wire
from your Raspberry Pi’s ground pin to one of the power rails — typically
marked with a blue or black stripe and a minus symbol — to provide a com-
mon ground for lots of components on the breadboard, and you can do the
same if your circuit needs 3.3V or 5V power.

Adding electronic components to a breadboard is simple: just line their
leads (the sticky-out metal parts) up with the holes and gently push until
the component is in place. For connections you need to make beyond those
the breadboard makes for you, you can use male-to-male (M2M) jumper
wires; for connections from the breadboard to the Raspberry Pi, use male-to-
female (M2F) jumper wires.

Next steps: reading a button
Outputs like LEDs are one thing, but the ‘input/output’ part of ‘GPIO’ means
you can use pins as inputs too. For this project, you’ll need a breadboard,
male-to-male (M2M) and male-to-female (M2F) jumper wires, and a push-
button switch. If you don’t have a breadboard you can use female-to-female
(F2F) jumper wires, but the button will be much harder to press without acci-
dentally breaking the circuit.

Start by adding the push-button to your breadboard. If your push-button has
only two legs, make sure they’re in different numbered rows of the bread-
board; if it has four legs, turn it so the sides the legs come out from are along
the breadboard’s rows and the flat leg-free sides are at the top and bottom.
Connect the ground rail of your breadboard to a ground pin of your Raspber-
ry Pi (marked GND on Figure 6-9) with a male-to-female jumper wire, then
connect one leg of your push-button to the ground rail with a male-to-male
jumper wire. Finally, connect the other leg — the one on the same side as the
leg you just connected, if using a four-leg switch — to the GPIO 2 pin (marked
GP2 on Figure 6-9) of your Raspberry Pi with a male-to-female jumper wire.

WARNING

Never try to cram more than one component lead or jumper wire into a single hole on

the breadboard. Remember: holes are connected in columns, aside from the split in

the middle, so a component lead in A1 is electrically connected to anything you add to

B1, C1, D1, and E1.

!

134 · Chapter 6 · Physical computing with Scratch and Python

Figure 6-9 Wiring a push-button to the GPIO pins

Reading a button in Scratch
Start a new Scratch program and drag an orange when clicked block onto
the code area. Connect a green set gpio to input pulled high block, and select
the number 2 from the drop-down to match the GPIO pin you used for the
push-button.

when clicked

set gpio 2 to input pulled high

If you click the green flag now, nothing will happen. That’s because you’ve
told Scratch to use the pin as an input, but not what to do with that input.
Drag an orange forever block to the end of your sequence, then drag an or-
ange if then else block inside it. Find the green gpio is high? block, drag it
into the diamond-shaped space in the if then part of the orange block, and
use the drop-down to select the number 2 to tell it which GPIO pin to check.
Drag a violet say Hello! for 2 seconds block into the else part of the orange
block, and edit it to say ‘Button pushed!’. Leave the space between if

and else in the orange block empty for now.

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 135

when clicked

set gpio 2 to input pulled high

forever

if gpio 2 is high ? then

else

say Button pushed! for 2 seconds

There’s a lot going on here. Start by testing your program: click the green flag,
then push the button on your breadboard. Your sprite should tell you that the
button has been pushed. Congratulations: you’ve successfully read an input
from the GPIO pin!

Because the space between if and else in the orange block is empty
for now, nothing happens when gpio 2 is high? evaluates to true. The code
that runs when the button is pushed is in the else part of the block. This
seems confusing: surely pressing the button makes it go high? In fact, it’s the
opposite: Raspberry Pi’s GPIO pins are normally high, or on, when set as an
input, and pushing the button pulls them down to low.

Look at your circuit again: see how the button is connected to the GPIO 2 pin,
which is providing the positive part of the circuit, and the ground pin. When
the button is pushed, the voltage on the GPIO pin is pulled low through the
ground pin, and your Scratch program stops running the code (if any) in your

if gpio 2 is high? then block and instead runs the code in the else part of the
block.

If that all sounds perplexing, just remember this: a button on a Raspberry Pi
GPIO pin is considered pushed when the pin goes low, not when it goes high!

To extend your program further, add the LED and resistor back into the circuit.
Remember to connect the resistor to pin 25 of the GPIO and the long leg of the
LED, and the shorter leg of the LED to the ground rail on your breadboard.

Drag the say Button pushed! for 2 seconds block off the code area to the block
palette to delete it, then replace it with a green set gpio 25 to output high

block, making sure to change the GPIO number using the drop-down arrow.

136 · Chapter 6 · Physical computing with Scratch and Python

Add a green set gpio 25 to output low block — remembering to change the
GPIO number — to the currently empty if gpio 2 is high? then part of the
block.

when clicked

set gpio 2 to input pulled high

forever

if gpio 2 is high ? then

set gpio 25 to output low

else

set gpio 25 to output high

Click the green flag and push the button. The LED will light up as long as
you’re holding the button down; let go, and it will go dark again. Congratula-
tions: you’re controlling one GPIO pin based on an input from another!

Reading a button in Python
Click the New button in Thonny to start a new project, and the Save button to
save it as Button Input.py. Using a GPIO pin as an input for a button is very
similar to using a pin as an output for an LED, but you need to import a dif-
ferent part of the GPIO Zero library. Type the following into the script area:

from gpiozero import Button

button = Button(2)

CHALLENGE: MAKE IT STAY LIT

How would you change the program to make the LED stay on for a few seconds, even

after you let go of the button? What would you need to change to have the LED on

while you’re not pressing the button and off while you are?

?

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 137

To have code run when the button is pressed, GPIO Zero provides the
wait_for_press function. Type the following:

button.wait_for_press()

print("You pushed me!")

Click the Run button, then press the push-button switch. Your message will
print to the Python shell at the bottom of the Thonny window. Congratula-
tions: you’ve successfully read an input from the GPIO pin!

If you want to try your program again, you’ll need to click the Run button
again. Because there’s no loop in the program, it quits as soon as it finishes
printing the message to the shell.

To extend your program further, add the LED and resistor back into the cir-
cuit if you haven’t already done so: remember to connect the resistor to pin
25 of the GPIO and the long leg of the LED, and the shorter leg of the LED to
the ground rail on your breadboard.

To control an LED as well as read a button, you’ll need to import both the
Button and LED functions from the GPIO Zero library. You’ll also need the
sleep function from the time library. Go back to the top of your program, and
type in the following as the new first two lines:

from gpiozero import LED

from time import sleep

Below the line button = Button(2), type:

led = LED(25)

Delete the line print("You pushed me!") and replace it with:

led.on()

sleep(3)

led.off()

138 · Chapter 6 · Physical computing with Scratch and Python

Your finished program should look like this:

from gpiozero import LED

from time import sleep

from gpiozero import Button

button = Button(2)

led = LED(25)

button.wait_for_press()

led.on()

sleep(3)

led.off()

Click the Run button, then press the push-button switch: the LED will come
on for three seconds, then turn off again and the program will exit. Congrat-
ulations: you can control an LED using a button input in Python!

Make some noise: controlling a buzzer
LEDs are a great output device, but not much use if you’re not looking at
them. The solution: buzzers, which make a noise audible anywhere in the
room. For this project you’ll need a breadboard, male-to-female (M2F) jumper
wires, and an active buzzer. If you don’t have a breadboard, you can connect
the buzzer using female-to-female (F2F) jumper wires instead.

An active buzzer can be treated exactly like an LED in terms of circuitry and
programming. Repeat the circuit you made for the LED, but replace the LED
with the active buzzer and leave the resistor out, as the buzzer will need more
current to work. Connect one leg of the buzzer to pin 15 of the GPIO (labelled
GP15 in Figure 6-10) and the other to the ground pin (labelled GND in the di-
agram) using your breadboard and male-to-female jumper wires.

If your buzzer has three legs, make sure the leg marked with a minus symbol
(-) is connected to the ground pin, and the leg marked with ‘S’ or ‘SIGNAL’
is connected to pin 15, then connect the remaining leg — usually the middle
leg — to the 3.3V pin (labelled 3V3.)

CHALLENGE: ADD A LOOP

How would you add a loop to make the program repeat instead of exiting after one

button press? What would you need to change to make the LED turn on while you’re

not pressing the button, and off while you are?

?

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 139

Figure 6-10 Connecting a buzzer to the GPIO pins

Controlling a buzzer in Scratch
Recreate the program you used to make the LED flash — or load it, if you
saved it earlier. Use the drop-down in the green set gpio to output high blocks
to select number 15, so Scratch is controlling the correct GPIO pin.

when clicked

forever

set gpio 15 to output high

wait 1 seconds

set gpio 15 to output low

wait 1 seconds

Click the green flag, and your buzzer will begin to buzz: one second on, one
second off. If you only hear the buzzer clicking once a second, your buzzer is
passive, not active. While an active buzzer generates a rapidly changing sig-
nal, known as an oscillation, to make the metal plates vibrate, a passive buzzer
needs to receive an external oscillation signal rather than producing one itself.

140 · Chapter 6 · Physical computing with Scratch and Python

When you turn it on using Scratch, the plates only move once and stop, making
the ‘click’ sound until the next time your program switches the pin on or off.

Click the red octagon to stop your buzzer, but do so when it’s not making a
sound, otherwise the buzzer will buzz until you run your program again!

Controlling a buzzer in Python
Controlling an active buzzer through the GPIO Zero library is almost identical
to controlling an LED, in that it has on and off states. You need a different,
function, though: Buzzer. Start a new project in Thonny and save it as
Buzzer.py, then type the following:

from gpiozero import Buzzer

from time import sleep

As with LEDs, GPIO Zero needs to know which pin your buzzer is connected
to in order to control it. Type the following:

buzzer = Buzzer(15)

From here, your program is almost identical to the one you wrote to control
the LED; the only difference (apart from a different GPIO pin number) is
you’re using buzzer in place of led. Type the following:

while True:

buzzer.on()

sleep(1)

buzzer.off()

sleep(1)

Click the Run button and your buzzer will begin to buzz: one second on, and
one second off. If you are using a passive buzzer rather than an active buzzer,
you’ll only hear a brief click every second instead of a continuous buzz.

Click the Stop button to exit the program, but make sure the buzzer isn’t
making a sound at the time, or it will continue to buzz until you run your pro-
gram again!

CHALLENGE: CHANGE THE BUZZ

How could you change the program to make the buzzer sound for a shorter time? Can

you build a circuit so the buzzer is controlled by a button?

?

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 141

Scratch project: Traffic Lights
Now that you know how to use buttons, buzzers, and LEDs as inputs and out-
puts, you’re ready to build an example of real-world computing: traffic lights,
complete with a button you can press to cross the road. For this project, you’ll
need a breadboard; red, yellow, and green LEDs; three 330Ω resistors; a
buzzer; a push-button switch; and a selection of male-to-male (M2M) and
male-to-female (M2F) jumper wires.

Start by building the circuit (Figure 6-11), connecting the buzzer to pin 15 of
the GPIO (labelled GP15 in Figure 6-11), the red LED to pin 25 (labelled GP25),
the yellow LED to pin 8 (GP8), the green LED to pin 7 (GP7), and the switch to
pin 2 (GP2). Remember to connect the 330Ω resistors between the GPIO pins
and the long legs of the LEDs, and connect the second legs on all your compo-
nents to the ground rail of your breadboard. Finally, connect the ground rail
to a ground pin (labelled GND) on Raspberry Pi to complete the circuit.

Figure 6-11 Wiring diagram for the Traffic Lights project

Start a new Scratch 3 project, then drag a when clicked block onto the
code area. Next, you’ll need to tell Scratch that pin 2 of the GPIO, which is
connected to the push-button switch, is an input rather than an output. Drag
a green set gpio to input pulled high block from the Raspberry Pi GPIO cate-
gory of the blocks palette under your when clicked block. Click on the
down arrow next to ‘0’ and select 2 from the drop-down list.

142 · Chapter 6 · Physical computing with Scratch and Python

Next, you need to create your traffic light sequence. Drag an orange forever

block into your program, then fill it with blocks to turn the traffic light LEDs
on and off in a pattern. Remember which GPIO pins have which component
attached: when you’re using pin 25 you’re using the red LED, pin 8 is the yel-
low LED, and pin 7 is the green LED.

when clicked

set gpio 2 to input pulled high

forever

set gpio 25 to output high

wait 5 seconds

set gpio 8 to output high

wait 2 seconds

set gpio 25 to output low

set gpio 8 to output low

set gpio 7 to output high

wait 5 seconds

set gpio 7 to output low

set gpio 8 to output high

wait 5 seconds

set gpio 8 to output low

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 143

Click the green flag and watch your LEDs: first the red will light, then both
the red and yellow, then the green, then the yellow, and finally the sequence
repeats, starting with the red light again. This pattern matches the one used
by traffic lights in the UK; you can edit the sequence to match patterns in oth-
er countries, if you wish.

To simulate a pedestrian crossing, you need your program to watch for the
button being pressed. Click the red octagon to stop your program if it’s cur-
rently running. Drag an orange if then else block onto your script area and
connect it so it’s directly beneath your forever block, with your traffic light
sequence in the ‘if then’ section. Leave the diamond-shaped gap empty for
now.

A real pedestrian crossing doesn’t change the light to red as soon as the but-
ton is pushed, but instead waits for the next red light in the sequence. To
build that into your own program, drag a green when gpio is low block on-
to the code area and select 2 from its drop-down list. Then drag an orange

set pushed to 1 block underneath it.

when gpio 2 is low

set pushed to 1

This block stack watches out for the button being pushed, then sets the vari-
able pushed to 1. Setting a variable this way lets you store the fact the button
has been pushed, even though you’re not going to act on it right away.

Go back to your original block stack and find the if then block. Drag a green
diamond-shaped = operator block into the if then block’s diamond
blank, then drag a dark orange pushed reporter block into the first blank
space. Type 0 over the 50 on the right-hand side of the block.

Click the green flag and watch the traffic lights go through their sequence.
When you’re ready, press the push-button switch: at first it will look like
nothing is happening, but once the sequence reaches its end — with just the
yellow LED lit — the traffic lights will go off and stay off, thanks to your
pushed variable.

144 · Chapter 6 · Physical computing with Scratch and Python

when clicked

set gpio 2 to input pulled high

forever

if pushed = 0 then

set gpio 25 to output high

wait 5 seconds

set gpio 8 to output high

wait 2 seconds

set gpio 25 to output low

set gpio 8 to output low

set gpio 7 to output high

wait 5 seconds

set gpio 7 to output low

set gpio 8 to output high

wait 5 seconds

set gpio 8 to output low

else

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 145

All that’s left is to make your pedestrian crossing button actually do some-
thing other than turn the lights off. In the main block stack, find the else

block and drag a set gpio 25 to output high block into it — remember to
change the default GPIO pin number to match the pin your red LED is con-
nected to.

Beneath that, still in the else block, create a pattern for the buzzer: drag
an orange repeat 10 block, then fill it with a green set gpio 15 to output high ,
an orange wait 0.2 seconds , a green set gpio 15 to output low , and another or-
ange wait 0.2 seconds block, changing the GPIO pin values to match the pin
for the buzzer.

Finally, beneath the bottom of your repeat 10 block but still in the else

block, add a green set gpio 25 to output low block and a dark orange
set pushed to 0 block. The last block resets the variable that stores the but-

ton press, so the buzzer sequence doesn’t just repeat forever.

Click the green flag, then push the switch on your breadboard. After the se-
quence finishes, you’ll see the red light go on and hear the buzzer sound to let
pedestrians know it’s safe to cross. After a couple of seconds, the buzzer will
stop and the traffic light sequence will start again and continue until the next
time you press the button.

Congratulations: you have programmed your own fully functional set of traf-
fic lights, complete with pedestrian crossing!

CHALLENGE: CAN YOU IMPROVE IT?

Can you change the program to give the pedestrian longer to cross? Can you find in-

formation about other countries’ traffic light patterns and reprogram your lights to

match? How could you make the LEDs less bright?

?

146 · Chapter 6 · Physical computing with Scratch and Python

when clicked

set gpio 2 to input pulled high

forever

if pushed = 0 then

set gpio 25 to output high

wait 5 seconds

set gpio 8 to output high

wait 2 seconds

set gpio 25 to output low

set gpio 8 to output low

set gpio 7 to output high

wait 5 seconds

set gpio 7 to output low

set gpio 8 to output high

wait 5 seconds

set gpio 8 to output low

else

set gpio 25 to output high

repeat 10

set gpio 15 to output high

wait 0.2 seconds

set gpio 15 to output low

wait 0.2 seconds

set gpio 25 to output low

set pushed to 0

when gpio 2 is low

set pushed to 1

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 147

Python project: Quick Reaction Game
Now that you know how to use buttons and LEDs as inputs and outputs,
you’re ready to build an example of real-world computing: a two-player
quick-reaction game, designed to see who has the fastest reaction time! For
this project you’ll need a breadboard, an LED, a 330Ω resistor, two push-button
switches, some male-to-female (M2F) jumper wires, and some male-to-male
(M2M) jumper wires.

Start by building the circuit (Figure 6-12): connect the first switch at the
left-hand side of your breadboard to pin 14 of the GPIO (labelled GP14 in
Figure 6-12). The second switch at the right-hand side of your breadboard
goes to pin 15 (labelled GP15); the LED’s longer leg connects to the 330Ω
resistor, which then connects to pin 4 of the GPIO (labelled GP4). The second
leg on all your components connects to your breadboard’s ground rail. Finally,
connect the ground rail to your Raspberry Pi’s ground pin (labelled GND).

Figure 6-12 Wiring diagram for the Quick Reaction Game

Start a new project in Thonny and save it as Reaction Game.py. You’re going
to be using the LED and button functions from the GPIO Zero library, and the
sleep function from the time library. Rather than importing the two GPIO
Zero functions on two separate lines, though, you can save time and import
them together using a comma symbol (,) to separate them. Type the follow-
ing in the script area:

from gpiozero import LED, Button

from time import sleep

148 · Chapter 6 · Physical computing with Scratch and Python

As before, you’ll need to tell GPIO Zero which pins the two buttons and the
LED are connected to. Type the following:

led = LED(4)

right_button = Button(15)

left_button = Button(14)

Now add instructions to turn the LED on and off, so you can check it’s work-
ing correctly:

led.on()

sleep(5)

led.off()

Click the Run button. The LED will turn on for five seconds, then turn off.
Then the program will quit. For the purposes of a reaction game, having the
LED go off after exactly five seconds every time is a bit predictable. Add the
following below the line from time import sleep:

from random import uniform

The random library, as its name suggests, lets you generate random numbers
(in this case with a uniform distribution — see rptl.io/uniform-dist). Find the
line sleep(5) and change it to read:

sleep(uniform(5, 10))

Click the Run button again: this time the LED will stay lit for a random num-
ber of seconds between 5 and 10. Count to see how long it takes for the LED
to go off, then click the Run button a few more times. You’ll see the time is
different for each run, making the program less predictable.

To turn the buttons into triggers for each player, you need to add a function.
Go to the very bottom of your program and type the following:

def pressed(button):

print(str(button.pin.number) + " won the game")

Remember that Python uses indentation to understand which lines are part
of your function; Thonny will automatically indent the second line for you.

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 149

http://rptl.io/uniform-dist

Finally, add the following two lines to detect when players press the but-
tons — remember that they must not be indented, or else Python will treat
them as part of your function.

right_button.when_pressed = pressed

left_button.when_pressed = pressed

Run your program, and this time try to press one of the two buttons as soon
as the LED goes out. You’ll see a message showing which button was pressed
first printed in the Python shell at the bottom of the Thonny window. Un-
fortunately, you’ll see the same message each time either button is pushed,
using the pin number rather than a friendly name for the button.

To fix that, start by asking the players for their names. Underneath the line
from random import uniform, type the following:

left_name = input("Left player name is ")

right_name = input("Right player name is ")

Go back to your function and replace the line print(str(button.pin.num-

ber) + " won the game") with:

if button.pin.number == 14:

print (left_name + " won the game")

else:

print(right_name + " won the game")

Click the Run button, then type the names of both players into the Python
shell area. When you press the button this time — as quickly as you can after
the LED goes out — you’ll see the player’s name displayed instead of the pin
number.

To fix the problem of all button presses being considered a win, you’ll need
to add a new function from the sys — short for system — library: exit. Under
the last import line, type the following:

from os import _exit

Then at the end of your function, under the line print(right_name + " won

the game"), type the following:

_exit(0)

150 · Chapter 6 · Physical computing with Scratch and Python

The indentation is important here: _exit(0) should be indented by four
spaces, lining up with else two lines above it, and if two lines above that.
This instruction tells Python to stop the program after the first button is
pressed, meaning the player who presses the button too late doesn’t get a re-
ward for losing!

Your finished program should look like this:

from gpiozero import LED, Button

from time import sleep

from random import uniform

from os import _exit

left_name = input("Left player name is ")

right_name = input ("Right player name is ")

led = LED(4)

right_button = Button(15)

left_button = Button(14)

led.on()

sleep(uniform(5, 10))

led.off()

def pressed(button):

if button.pin.number == 14:

print(left_name + " won the game")

else:

print(right_name + " won the game")

_exit(0)

right_button.when_pressed = pressed

left_button.when_pressed = pressed

Click the Run button, enter the players’ names, wait for the LED to go off,
press a button, and you’ll see the name of the winning player. You’ll also
see a message from Python itself: Process ended with exit code 0. This
means that Python received your _exit(0) command and halted the pro-
gram, and is ready for its next instructions. If you want to play again, click
the Run button once more!

Congratulations: you’ve made your own physical game!

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 151

Figure 6-13 Whoever is first to press the button after the light goes out will be declared the winner

CHALLENGE: IMPROVE THE GAME

Can you add a loop, so the game runs continuously? Remember to remove the

_exit(0) instruction first! Can you add a score counter, so you can see who is win-

ning over multiple rounds? What about a timer, so you can see just how long it took

you to react to the light going off?

?

152 · Chapter 6 · Physical computing with Scratch and Python

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 153

Chapter 7

Physical computing with the
Sense HAT
As used on the International Space Station, the Sense HAT is a
multifunctional add-on board for Raspberry Pi, equipped with
sensors and an LED matrix display.

Raspberry Pi comes with support for a special type of add-on board called
Hardware Attached on Top (HAT). HATs can add everything from microphones
and lights to electronic relays and screens to Raspberry Pi, but one HAT in
particular is very special: the Sense HAT.

The Sense HAT was designed specially for the Astro Pi space mission. A joint
project between the Raspberry Pi Foundation, the UK Space Agency, and the
European Space Agency (ESA), Astro Pi saw Raspberry Pi boards, cameras and
Sense HATs carried up to the International Space Station (ISS) aboard an Or-
bital Science Cygnus cargo rocket. Since safely reaching orbit high above the
Earth, the Raspberry Pis — nicknamed Ed and Izzy by the astronauts — have
been used to run code and carry out scientific experiments contributed by
tens of thousands of schoolchildren from dozens of countries across Europe.
New, updated Raspberry Pi hardware (Raspberry Pi 4s nicknamed Flora, Fau-
na, and Fungi) was sent to the ISS in 2022. If you’re in Europe and under 19

WARNING!

At the time of writing, neither Scratch 3 nor the Sense HAT Emulator software have

been updated to support Raspberry Pi 5, and the Sense HAT Emulator contained a

bug that prevents it from running on the latest version of Raspberry Pi OS (see rptl.io/

sense-emu-fix for a partial workaround). If you’re having problems, check for updates

(see Software Updates in Chapter 3, Using your Raspberry Pi).

!

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 155

http://rptl.io/sense-emu-fix
http://rptl.io/sense-emu-fix

years old, you can find out how to run your own code and experiments in
space at astro-pi.org.

The same Sense HAT hardware that’s in use on the ISS can be found here on
Earth, too, at all Raspberry Pi retailers — and if you don’t want to buy a Sense
HAT right now, you can simulate one in software.

Introducing the Sense HAT
The Sense HAT (Figure 7-1) is a powerful, multifunctional add-on for Rasp-
berry Pi. As well as an 8×8 matrix of 64 red, green, and blue (RGB) program-
mable LEDs which can be controlled to produce any colour from a range of
millions, the Sense HAT includes a five-way joystick controller and six (or
seven, on later models) on-board sensors.

Figure 7-1 The Sense HAT

▶ Gyroscope sensor — Used to sense changes in angle over time, tech-
nically known as angular velocity, the gyroscope sensor can tell when
you rotate the Sense HAT on any one of this three axes — and how
quickly it’s rotating.

REAL OR SIMULATED

This chapter is easier to follow if you use a real Sense HAT attached to a Raspberry

Pi’s GPIO header, but anyone who doesn’t have one can skip “Installing the Sense

HAT” on page 158 and try the projects out in the Sense HAT Emulator instead.

?

156 · Chapter 7 · Physical computing with the Sense HAT

http://astro-pi.org/

▶ Accelerometer — Similar to the gyroscope sensor, but rather than
monitoring an angle, it measures acceleration force in multiple di-
rections. Combined, readings (data) from the accelerometer and the
gyroscope sensor can help you track where a Sense HAT is pointing,
and how it’s being moved.

▶ Magnetometer — Measures the strength of a magnetic field. The mag-
netometer is another sensor which can help track the Sense HAT’s
movements: by measuring the Earth’s natural magnetic field, the
magnetometer can figure out the direction of magnetic north. The
same sensor can also be used to detect metallic objects, and even
electrical fields. All three of these sensors are built into a single chip,
labelled AACCCCELEL/G/GYRYROO/MA/MAGG on the Sense HAT’s circuit board.

▶ Humidity sensor — Measures the amount of water vapour in the air
(the relative humidity). Relative humidity can range from 0%, when
no water vapour is present at all, to 100%, when the air is completely
saturated. Humidity data can also help detect when it might be
about to rain.

▶ Barometric pressure sensor — also known as the barometer, this mea-
sures air pressure. Although most people will be familiar with baro-
metric pressure from the weather forecast, the barometer has a
secret second use: it can track when you’re climbing up or down a
hill or mountain, as the air gets thinner and the pressure decreases
the further you get from Earth’s sea level.

▶ Temperature sensor — Measures how hot or cold the surrounding en-
vironment is. This measurement can be affected by how hot or cold
the Sense HAT itself is: if you’re using a case, you may find your read-
ings are higher than you expect. The Sense HAT doesn’t have a sep-
arate temperature sensor; instead, it uses temperature sensors built
into the humidity and barometric pressure sensors. A program can use
one or both of these sensors: it’s up to you.

▶ Colour and brightness sensor — Only available on Sense HAT V2, the
colour and brightness sensor picks up the light around you and reports
on its intensity — great for projects in which you want to automatical-
ly dim and brighten the LEDs according to how well-lit your room is.
The sensor can also be used to report on the colour of incoming light.
Its readings will be affected by the light coming from Sense HAT’s
own LED matrix, so consider this when designing your experiments.
This is the only sensor you can’t emulate using the Sense HAT Emula-
tor; you’ll need a real Sense HAT V2 to use it.

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 157

Installing the Sense HAT
Start by unpacking your Sense HAT and making sure you have all the pieces:
you should have the Sense HAT itself, four metal or plastic pillars known as
spacers, and eight screws. You may also have some metal pins mounted in a
black plastic strip, like the GPIO pins on Raspberry Pi; if so, push this strip
pin-side-up through the bottom of the Sense HAT until you hear a click.

The spacers are designed to stop the Sense HAT from bending and flexing as
you use the joystick. While the Sense HAT will work without them being in-
stalled, using them will help protect your Sense HAT, Raspberry Pi, and GPIO
header from damage.

If you’re using the Sense HAT with Raspberry Pi Zero 2 W, you won’t be able
to use all four spacers. You’ll also need to have soldered some pins onto the
GPIO header, or have purchased your board from a reseller who has done it
for you.

Install the spacers by pushing four of the screws up from underneath your
Raspberry Pi through the four mounting holes at each corner. Twist the spac-
ers onto the screws. Push the Sense HAT down onto your Raspberry Pi’s GPIO
header, making sure to line it up properly with the pins underneath and to
keep it as flat as possible.

SENSE HAT ON RASPBERRY PI 400

The Sense HAT is fully compatible with Raspberry Pi 400, and can be inserted directly

into the GPIO header on the back. Doing so, however, means that the LEDs will be fac-

ing away from you and the board will be oriented upside-down.

To fix this, you’ll need a GPIO extension cable or board. Compatible extensions in-

clude the Black HAT Hack3r range from pimoroni.com; you can use the Sense HAT

with the Black HAT Hack3r board itself, or simply use the included 40-pin ribbon cable

as an extension. Always check the manufacturer’s instructions, though, to be sure

you’re connecting the cable and Sense HAT the right way around!

WARNING!

Hardware Attached on Top (HAT) modules should only ever be plugged into and re-

moved from the GPIO header while your Raspberry Pi is switched off and disconnect-

ed from its power supply. Always be careful to keep the HAT flat when installing it,

and double-check that it’s lined up with the GPIO header pins before pushing it down.

?

!

158 · Chapter 7 · Physical computing with the Sense HAT

http://pimoroni.com/

Finally, screw the final four screws through the mounting holes on the Sense
HAT and into the spacers you installed earlier. If it’s installed properly, the
Sense HAT should be flat and level, and shouldn’t bend or wobble as you push
on its joystick.

Plug the power back into your Raspberry Pi, and you’ll see the LEDs on the
Sense HAT light up in a rainbow pattern (Figure 7-2), then go dark again. Your
Sense HAT is now installed!

Figure 7-2 A rainbow pattern appears when the
power is first turned on

If you want to remove the Sense HAT again, undo the top screws, lift the HAT
off — being careful not to bend the pins on the GPIO header, as the HAT holds
on quite tightly (you may need to prise it off gently) — then remove the spac-
ers from Raspberry Pi.

You’ll need some software to program the Sense HAT, which may not be al-
ready installed. If you can’t find Scratch 3 and the Sense HAT Emulator in the
Programming section of the Raspberry menu, head to Chapter 3, Using your
Raspberry Pi, and follow the instructions in the Recommended Software sec-
tion to install them both.

PROGRAMMING EXPERIENCE

This chapter assumes experience with Scratch 3 or Python and the Thonny integrated

development environment (IDE). If you haven’t done so already, please turn to Chapter

4, Programming with Scratch 3, or Chapter 5, Programming with Python, and work

through the projects in those chapters first.

?

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 159

Hello, Sense HAT!
As with all programming projects, there’s an obvious place to start with the
Sense HAT: scrolling a welcome message across its LED display. If you’re us-
ing the Sense HAT emulator, load it now by clicking on the Raspberry Pi icon,
choosing the Programming category, and clicking on Sense HAT Emulator.

Greetings from Scratch
Load Scratch 3 from the Raspberry Pi menu. Click the Add Extension button
at the bottom-left of the Scratch window. Click on the Raspberry Pi Sense
HAT extension (Figure 7-3). This loads the blocks you need to control the var-
ious features of the Sense HAT, including its LED display. When you need
them, you’ll find them in the Raspberry Pi Sense HAT category.

Figure 7-3 Adding the Raspberry Pi Sense HAT extension to Scratch 3

Start by dragging a when clicked Events block onto the script area, then
drag a display text Hello! block directly underneath it. Edit the text so that
the block reads display text Hello, World! .

when clicked

display text Hello, World!

160 · Chapter 7 · Physical computing with the Sense HAT

Click the green flag on the stage area and watch your Sense HAT or the Sense
HAT emulator: the message will scroll slowly across Sense HAT’s LED matrix,
lighting up the LED pixels to form each letter in turn (Figure 7-4). Congratu-
lations: your program’s a success!

Figure 7-4 Your message scrolls across the LED
matrix

Now that you can scroll a simple message, it’s time to control how that mes-
sage is displayed. As well as being able to modify the message, you can
alter the rotation — which direction the message is displayed in. Drag a

set rotation to 0 degrees block from the blocks palette and insert it below
when clicked and above display text Hello, World! . Click on the down ar-

row next to 0 and change it to 90.

Click the green flag and you’ll see the same message as before, but rather than
scrolling left-to-right, it will scroll bottom-to-top (Figure 7-5) — you’ll need
to turn your head, or the Sense HAT, to read it!

Figure 7-5 This time the message scrolls vertically

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 161

Now change the rotation back to 0, and drag a set colour block between
set rotation to 0 degrees and display text Hello, World! . Click on the colour at

the end of the block to bring up Scratch’s colour picker, and find a nice bright
yellow colour. Now click the green flag to see how your program’s output has
changed (Figure 7-6).

Figure 7-6 Changing the colour of the text

Finally, drag a set background block between set colour and
display text Hello, World! . Click on the colour to bring up the colour picker

again. This time, choosing a colour doesn’t affect the LEDs that make up the
message. It changes the LEDs that don’t: the background. Find a nice blue
colour, then click the green flag again: this time your message will be in a
bright yellow on a blue background. Try changing these colours to find your
favourite combination — not all colours work well together!

As well as being able to scroll entire messages, you can show individual let-
ters. Drag your display text Hello, World! block off the script area to delete it,
then drag a display character A block onto the script area in its place.

Click the green flag, and you’ll see the difference: this block shows only one
letter at a time, and the letter stays on the Sense HAT until you tell it other-
wise without scrolling or disappearing. The same colour control blocks apply
to this block as the display text block: try changing the letter’s colour to red
(Figure 7-7).

CHALLENGE: REPEAT THE MESSAGE

Can you use your knowledge of loops to make a scrolling message repeat itself? Can

you create a program that spells out a word letter-by-letter, using different colours?

?

162 · Chapter 7 · Physical computing with the Sense HAT

Figure 7-7 Displaying a single letter

Greetings from Python
Load Thonny by clicking on the Raspberry icon, choosing Programming, and
clicking on Thonny. If you’re using the Sense HAT emulator and it gets cov-
ered by the Thonny window, click and hold the mouse button on either win-
dow’s title bar — at the top, in blue — and drag it to move it around the
desktop until you can see both windows.

To use the Sense HAT, or Sense HAT emulator, in a Python program, you
need to import the Sense HAT library. Type the following into the script area,
remembering to use sense_emu (in place of sense_hat) if you’re using the
Sense HAT emulator:

from sense_hat import SenseHat

sense = SenseHat()

The Sense HAT library has a simple function for taking a message, formatting
it so that it can be shown on the LED display, and scrolling it smoothly. Type
the following:

sense.show_message("Hello, World!")

PYTHON LINE CHANGE

Python code written for a physical Sense HAT runs on the Sense HAT emulator, and

vice-versa, with only one change. If you’re using the Sense HAT emulator with Python

you’ll need to change the line from sense_hat import SenseHat in all the pro-

grams from this chapter to from sense_emu import SenseHat instead. If you

want to then run them on a physical Sense HAT again, just change the line back!

?

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 163

Save your program as Hello Sense HAT.py, then click the Run button. You’ll
see your message scroll slowly across the Sense HAT’s LED matrix, lighting up
the LED pixels to form each letter in turn (Figure 7-8). Congratulations: your
program’s a success!

Figure 7-8 Scrolling a message across the LED
matrix

The show_message() function has more tricks up its sleeve than that,
though. Go back to your program and edit the last line so it says:

sense.show_message("Hello, World!", text_colour=(255, 255, 0),

back_colour=(0, 0, 255), scroll_speed=(0.05))

These extra instructions, separated by commas, are known as parameters,
and they control various aspects of the show_message() function. The sim-
plest is scroll_speed=(), which changes how quickly the message scrolls
across the screen. A value of 0.05 in here scrolls at roughly twice the usual
speed. The bigger the number, the lower the speed.

The text_colour=() and back_colour=() parameters — spelled in the
British English way, unlike most Python instructions — set the colour of the
writing and the background respectively. They don’t accept the names of
colours, though; you have to define the colour you want using a trio of num-
bers. The first number represents the amount of red in the colour, from 0 for
no red at all to 255 for as much red as possible; the second number is the
amount of green in the colour; and the third number the amount of blue. To-
gether, these are known as RGB — for red, green, and blue.

Click on the Run icon and watch the Sense HAT: this time, the message will
scroll considerably faster, and be displayed in a bright yellow on a blue back-
ground (Figure 7-9). Try changing the parameters to find a speed and colour
combination that works for you.

164 · Chapter 7 · Physical computing with the Sense HAT

Figure 7-9 Changing the colour of the message
and background

If you want to use friendly names instead of RGB values to set your colours,
you’ll need to create variables. Above your sense.show_message() line, add
the following:

yellow = (255, 255, 0)

blue = (0, 0, 255)

Go back to your sense.show_message() line and edit it so it reads:

sense.show_message("Hello, World!", text_colour=(yellow),

back_colour=(blue), scroll_speed=(0.05))

Click the Run icon again, and you’ll see that nothing has changed: your mes-
sage is still in yellow on a blue background. This time, though, you’ve used
the variable names to make your code more readable. Instead of a string of
numbers, the code explains what colour it’s setting. You can define as many
colours as you like: try adding a variable called ‘red’ with the values 255, 0,
and 0; a variable called ‘white’ with the values 255, 255, 255; and a variable
called ‘black’ with the values 0, 0, and 0.

As well as being able to scroll full messages, you can display individual let-
ters. Delete your sense.show_message() line altogether, and type the fol-
lowing in its place:

sense.show_letter("A")

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 165

Click Run, and you’ll see the letter ‘A‘ appear on the Sense HAT’s display. This
time, it’ll stay there: individual letters, unlike messages, don’t automatically
scroll. You can control sense.show_letter() with the same colour parame-
ters as sense.show_message(), too: try changing the colour of the letter to
red (Figure 7-7).

Figure 7-10 Displaying a single letter

Next steps: Drawing with light
The Sense HAT’s LED display isn’t just for messages: you can display pictures,
too. Each LED can be treated as a single pixel — short for picture element —
in an image of your choosing. This allows you to jazz up your programs with
pictures and even animation.

To create drawings, you need to be able to change individual LEDs. To do that,
you’ll need to understand how the Sense HAT’s LED matrix is laid out. Then
you’ll be able to write a program that turns the correct LEDs on or off.

There are eight LEDs in each row of the display, and eight in each column
(Figure 7-11). When counting the LEDs, though, you should start at 0 and end
at 7, like most programming languages do. The first LED is in the top-left cor-
ner, the last is in the bottom-right. Using the numbers from the rows and
columns, you can find the coordinates of any LED on the matrix. The blue LED
in the pictured matrix is at coordinates 0, 2; the red LED is at coordinates 7,
4. The X axis coordinate comes first and increases across the matrix, followed
by the Y axis, which increases down the matrix.

CHALLENGE: REPEAT THE MESSAGE

Can you use your knowledge of loops to make a scrolling message repeat itself? Can

you create a program that spells out a word letter-by-letter, using different colours?

How fast can you make a message scroll?

?

166 · Chapter 7 · Physical computing with the Sense HAT

Figure 7-11 LED matrix coordinates system

When planning pictures to draw on the Sense HAT, it may help to draw them
by hand first, on gridded paper, or you can plan things out in a spreadsheet
such as LibreOffice Calc.

Pictures in Scratch
Start a new project in Scratch, saving your existing project if you want to
keep it. If you’ve been working through the projects in this chapter, Scratch
3 will keep the Raspberry Pi Sense HAT extension loaded; if you have closed
and reopened Scratch 3 since your last project, load the extension using the
Add Extension button. Drag a when clicked Events block onto the code
area, then drag set background and set colour blocks underneath it. Edit
both to set the background colour to black, and the colour to white. Make
black by sliding the Brightness and Saturation sliders to 0; make white by
sliding Brightness to 100 and Saturation to 0. You’ll need to do this at the
start of every Sense HAT program, otherwise Scratch will simply use the last
colours you chose — even if you chose them in a different program. Finally,
drag a display raspberry block to the bottom of your program.

when clicked

set background to

set colour to

display

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 167

Click the green flag: you’ll see the Sense HAT’s LEDs light up a raspberry
shape (Figure 7-12).

Figure 7-12 Displaying the raspberry shape with
Scratch

You’re not limited to the pre-set raspberry shape, either. Click on the down-
arrow next to the raspberry image to activate drawing mode. You can click
on any LED on the pattern individually to switch it on or off, while the two
buttons at the bottom set all LEDs to on or off. Try drawing your own pattern
now, then click the green arrow to see it on the Sense HAT. Also try changing
the colour and the background colour using the blocks above.

When you’ve finished, drag the three blocks into the blocks palette to delete
them, and place a set clear display block under when clicked ; click the
green flag, and all the LEDs will switch off.

To make a picture, you need to be able to control individual pixels and to
assign them different colours. You can do this by chaining edited

display raspberry blocks with set colour blocks, or you can address each
pixel individually. Try creating your own version of the LED matrix example
pictured at the start of this section. Two specifically selected LEDs are lit up
in red and blue. Leave the clear display block at the top of your program
and drag a set background block underneath it. Change the set background

block to black, then drag two set pixel x 0 y 0 blocks underneath it. Finally,
edit these blocks as shown.

Click the green flag, and you’ll see your LEDs light up to match the matrix im-
age (Figure 7-13). Congratulations: you can control individual LEDs!

WARNING

When the LEDs are bright white, as in this code example, avoid looking directly at

them — they’re bright enough to hurt your eyes.

!

168 · Chapter 7 · Physical computing with the Sense HAT

when clicked

clear display

set background to

set pixel x 0 y 2 to

set pixel x 7 y 4 to

Edit your existing set pixel blocks as follows, and drag more onto the bottom
until you have created the following program.

when clicked

clear display

set background to

set pixel x 2 y 2 to

set pixel x 4 y 2 to

set pixel x 3 y 4 to

set pixel x 1 y 5 to

set pixel x 2 y 6 to

set pixel x 3 y 6 to

set pixel x 4 y 6 to

set pixel x 5 y 5 to

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 169

Before you click the green flag, see if you can guess what picture is going to
appear based on the LED matrix coordinates you’ve used. Now run your pro-
gram and see if you’re right!

Pictures in Python
Start a new program in Thonny and save it as Sense HAT Drawing, then type
the following — remembering to use sense_emu (in place of sense_hat) if
you’re using the emulator:

from sense_hat import SenseHat

sense = SenseHat()

Remember that you need both these lines your program in order to use the
Sense HAT. Next, type:

sense.clear(255, 255, 255)

While not looking directly at the Sense HAT’s LEDs, click the Run icon: you
should see them all turn a bright white (Figure 7-13) — which is why you
shouldn’t be looking directly at them when you run your program!

Figure 7-13 Turning all the LEDs on

CHALLENGE: NEW DESIGNS

Can you design more pictures? Try getting some graph paper and using it to plan out

your picture by hand. Can you draw the picture on your Sense HAT and make the

colours change?

?

170 · Chapter 7 · Physical computing with the Sense HAT

The sense.clear() command is designed to clear the LEDs of any previous
programming, but accepts RGB colour parameters — meaning you can
change the display to any colour you like. Try editing the line to:

sense.clear(0, 255, 0)

Click Run, and the Sense HAT will go bright green (Figure 7-14). Experiment
with different colours, or add the colour-name variables you created when
you wrote your Hello World program to make things easier to read.

Figure 7-14 The LED matrix lit up in bright green

To clear the LEDs, you need to use the RGB values for black: 0 red, 0 blue, and
0 green. There’s an easier way, though. Edit the line of your program to read:

sense.clear()

The Sense HAT will go dark. This is because for the sense.clear() function,
having nothing between the brackets is equivalent to telling it to turn all
LEDS to black — i.e. switch them off (Figure 7-15). When you need to com-
pletely clear the LEDs in your programs, that’s the function you should use.

To create your own version of the LED matrix pictured earlier in this chapter,
with two specifically selected LEDs lit up in red and blue, add the following
lines to your program after sense.clear():

sense.set_pixel(0, 2, (0, 0, 255))

sense.set_pixel(7, 4, (255, 0, 0))

WARNING

When the LEDs are bright white, avoid looking directly at them — they’re bright enough

to hurt your eyes.

!

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 171

Figure 7-15 Use the sense.clear function to

turn off all the LEDs

The first two numbers are the pixel’s location on the matrix, with the X
(across) axis followed by the Y (down) axis. The second set of numbers, sur-
rounded by their own brackets, are the RGB values for the pixel’s colour. Click
the Run button, and you’ll see the effect: two LEDs on your Sense HAT will
light up, as shown in Figure 7-11.

Delete those two lines, and type in the following:

sense.set_pixel(2, 2, (0, 0, 255))

sense.set_pixel(4, 2, (0, 0, 255))

sense.set_pixel(3, 4, (100, 0, 0))

sense.set_pixel(1, 5, (255, 0, 0))

sense.set_pixel(2, 6, (255, 0, 0))

sense.set_pixel(3, 6, (255, 0, 0))

sense.set_pixel(4, 6, (255, 0, 0))

sense.set_pixel(5, 5, (255, 0, 0))

Before you click Run, look at the coordinates and compare them to the ma-
trix: can you guess what picture these instructions are going to draw? Click
Run to find out if you’re right!

Drawing a detailed picture using individual set_pixel() functions is slow,
though. To speed things up, you can change multiple pixels at the same time.
Delete all your set_pixel() lines and type the following:

g = (0, 255, 0)

b = (0, 0, 0)

creeper_pixels = [

g, g, g, g, g, g, g, g,

g, g, g, g, g, g, g, g,

172 · Chapter 7 · Physical computing with the Sense HAT

g, b, b, g, g, b, b, g,

g, b, b, g, g, b, b, g,

g, g, g, b, b, g, g, g,

g, g, b, b, b, b, g, g,

g, g, b, b, b, b, g, g,

g, g, b, g, g, b, g, g

]

sense.set_pixels(creeper_pixels)

There’s a lot there, but start by clicking Run to see if you recognise a certain
little creeper. The first two lines create two variables to hold colours: green
and black. To make the code for the drawing easier to write and read, the vari-
ables are single letters: ‘g’ for green and ‘b’ for black.

The next block of code creates a variable which holds colour values for all 64
pixels on the LED matrix, separated by commas and enclosed between square
brackets. Instead of numbers, though, it uses the colour variables you created
earlier: look closely, remembering ‘g’ is for green and ‘b’ is for black, and you
can already see the picture that will appear (Figure 7-16).

Finally, sense.set_pixels(creeper_pixels) takes that variable and uses
the sense.set_pixels() function to draw on the entire matrix at once. Much
easier than trying to draw pixel-by-pixel!

Figure 7-16 Displaying an image on the matrix

You can also rotate and flip images, either as a way to show images the right
way up when your Sense HAT is turned around, or as a way to create simple
animations using a single asymmetrical image.

Start by editing your creeper_pixels variable to close his left eye, by replac-
ing the four ‘b’ pixels, starting with the first two on the third line and then the
first two on the fourth line, with ‘g’:

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 173

creeper_pixels = [

g, g, g, g, g, g, g, g,

g, g, g, g, g, g, g, g,

g, g, g, g, g, b, b, g,

g, g, g, g, g, b, b, g,

g, g, g, b, b, g, g, g,

g, g, b, b, b, b, g, g,

g, g, b, b, b, b, g, g,

g, g, b, g, g, b, g, g

]

Click Run, and you’ll see the creeper’s left eye close (Figure 7-17). To make an
animation, go to the top of your program and add the line:

from time import sleep

Then go to the bottom and type:

while True:

sleep(1)

sense.flip_h()

Click Run, and watch the creeper as it blinks its eyes, one at a time!

Figure 7-17 Showing a simple two-frame
animation

The flip_h() function flips an image on the horizontal axis. If you want
to flip an image on its vertical axis, replace sense.flip_h() with
sense.flip_v() instead. You can also rotate an image by 0, 90, 180, or 270
degrees using sense.set_rotation(90), changing the number according to
how many degrees you want to rotate the image. Try using this to have the
creeper spin around instead of blinking!

174 · Chapter 7 · Physical computing with the Sense HAT

Sensing the world around you
The Sense HAT’s real power lies in its sensors. These allow you to take read-
ings of everything from temperature to acceleration, and use the information
they give you in your programs.

Environmental sensing
The barometric pressure sensor, humidity sensor, and temperature sensor are
all environmental sensors; they take measurements from the environment
surrounding the Sense HAT.

Environmental sensing in Scratch
Start a new program in Scratch, saving your old one if you wish, and add
the Raspberry Pi Sense HAT extension if it isn’t already loaded. Drag a

when clicked Events block onto your code area, then a clear display

block underneath, and a set background to black block underneath that.
Next, add a set colour to white block — use the Brightness and Saturation
sliders to choose the correct colour. It’s always a good idea to do this at the
start of your programs, as it will make sure the Sense HAT isn’t showing
anything left over from an old program, while guaranteeing what colours
you’re using. Drag a say Hello! for 2 seconds Looks block directly underneath
your existing blocks. To take a reading from the pressure sensor, find the

pressure block in the Raspberry Pi Sense HAT category and drag it over the
word ‘Hello!’ in your say Hello! for 2 seconds block.

CHALLENGE: NEW DESIGNS

Can you design more pictures and animations? Try getting some graph paper and us-

ing it to plan out your picture by hand, to make writing the variable easier. Can you

draw a picture and make the colours change? Remember: you can change the vari-

ables after you’ve already used them once.

EMULATING THE SENSORS

If you’re using the Sense HAT Emulator, you’ll need to enable inertial and environmental

sensor simulation: in the Emulator, click Edit, then Preferences, then tick them, if they

are not already ticked. In the same menu, choose 180°..360°|0°..180° under Orienta-

tion Scale to make sure the numbers in the Emulator match the numbers reported by

Scratch and Python, then click the Close button.

?

?

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 175

when clicked

clear display

set background to

set colour to

say pressure for 2 seconds

Click the green flag, and the Scratch cat will tell you the current reading from
the pressure sensor in millibars. After two seconds, the message will disap-
pear. Try blowing on the Sense HAT (or moving the Pressure slide up in the
emulator) and clicking the green flag to run the program again; you should
see a higher reading this time (Figure 7-18).

Figure 7-18 Showing the pressure sensor reading

CHANGING VALUES

If you’re using the Sense HAT emulator, you can change the values reported by each

of the emulated sensors using its sliders and buttons. Try sliding the pressure sensor

setting down towards the bottom, then clicking the green flag again.

?

176 · Chapter 7 · Physical computing with the Sense HAT

To switch to the humidity sensor, delete the pressure block and replace it
with humidity . Run your program again, and you’ll see the current relative
humidity of your room. Again, you can try running the program while blow-
ing on the Sense HAT (or moving the emulator’s Humidity slider up) to
change the reading (Figure 7-19) — your breath is surprisingly humid!

Figure 7-19 Displaying the reading from the humidity sensor

Using the temperature sensor is as easy as deleting the humidity block and
replacing it with temperature , then running your program again. You’ll see
a temperature in degrees Celsius (Figure 7-20). This might not be the exact
temperature of your room, however: your Raspberry Pi generates heat all the
time it’s running, and this warms the Sense HAT and its sensors too.

CHALLENGE: SCROLL AND LOOP

Can you change your program to take a reading from each of the sensors in turn,

then scroll them across the LED matrix rather than printing them to the stage area?

Can you make your program loop, so it’s constantly printing the current environmen-

tal conditions?

?

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 177

Figure 7-20 Displaying the temperature sensor reading

Environmental sensing in Python
To start taking readings from sensors, create a new program in Thonny and
save it as Sense HAT Sensors.py. Type the following into the script area —
you will have to do this every time you use the Sense HAT — and remember to
use sense_emu if you’re using the emulator:

from sense_hat import SenseHat

sense = SenseHat()

sense.clear()

It’s always a good idea to include sense.clear() at the start of your pro-
grams, just in case the Sense HAT’s display is still showing something from
the last program it ran.

To take a reading from the pressure sensor, type:

pressure = sense.get_pressure()

print(pressure)

Click Run and you’ll see a number printed to the Python shell at the bottom
of the Thonny window. This is the air pressure reading detected by the baro-
metric pressure sensor, in millibars (Figure 7-21).

178 · Chapter 7 · Physical computing with the Sense HAT

Try blowing on the Sense HAT (or moving the Pressure slider up in the em-
ulator) while clicking the Run icon again; the number should be higher this
time.

Figure 7-21 Printing a pressure reading from the Sense HAT

To switch to the humidity sensor, remove the last two lines of code and re-
place them with:

humidity = sense.get_humidity()

print(humidity)

Click Run and you’ll see another number printed to the Python shell: this
time, it’s the current relative humidity of your room as a percentage. Again,
you can blow on the Sense HAT (or move the emulator’s Humidity slider up)
and you’ll see it go up when you run your program again (Figure 7-22) — your
breath is surprisingly humid!

CHANGING VALUES

If you’re using the Sense HAT emulator, you can change the values reported by each

of the emulated sensors using its sliders and buttons. Try sliding the pressure sensor

setting down towards the bottom, then clicking Run again.

?

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 179

Figure 7-22 Displaying the humidity sensor reading

For the temperature sensor, remove the last two lines of your program and re-
place them with:

temp = sense.get_temperature()

print(temp)

Click Run again, and you’ll see a temperature in degrees Celsius (Figure 7-23).
This might not be the exact temperature of your room, however: your Rasp-
berry Pi generates heat all the time it’s running, and this warms the Sense
HAT and its sensors too.

Normally the Sense HAT reports the temperature based on a reading from
the temperature sensor built into the humidity sensor. If you want to use the
reading from the pressure sensor instead, you should use sense.get_tem-

perature_from_pressure(). It’s also possible to combine the two readings
to get an average, which may be more accurate than using either sensor alone.
To do this, delete the last two lines of your program and type:

htemp = sense.get_temperature()

ptemp = sense.get_temperature_from_pressure()

temp = (htemp + ptemp) / 2

print(temp)

180 · Chapter 7 · Physical computing with the Sense HAT

Figure 7-23 Showing the current temperature reading

Click the Run icon, and you’ll see a number printed to the Python console
(Figure 7-24). This time, it’s based on readings from both sensors, which
you’ve added together and divided by two — the number of readings — to get
an average of both. If you’re using the emulator, all three methods — humidi-
ty, pressure, and average — will show around the same number.

Inertial sensing
The gyroscopic sensor, accelerometer, and magnetometer combine to form
what is known as an inertial measurement unit (IMU). While, technically
speaking, these sensors take measurements from the surrounding environ-
ment just like the environmental sensors — the magnetometer, for example,
measures magnetic field strength — they’re usually used for data about the
movement of the Sense HAT itself. The IMU is the sum of multiple sensors.

CHALLENGE: SCROLL AND LOOP

Can you change your program to take a reading from each of the sensors in turn,

then scroll them across the LED matrix rather than printing them to the shell? Can

you make your program loop, so it’s constantly printing the current environmental

conditions?

?

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 181

Figure 7-24 A temperature based on the readings from both sensors

Some programming languages allow you to take readings from each sensor
independently, while others will only give you a combined reading.

Before you can make sense of the IMU, you need to understand how things
move. The Sense HAT, and the Raspberry Pi it’s attached to, can move along
three spatial axes: side-to-side on the X axis; forwards and backwards on the
Y axis; and up and down on the Z axis (Figure 7-25). It can also rotate along
these three same axes, but their names change: rotating on the X axis is called
roll, rotating on the Y axis is called pitch, and rotating on the Z axis is called
yaw. When you rotate the Sense HAT along its short axis, you’re adjusting its
pitch; rotate along its long axis, and that’s roll. Spin it around while keeping
it flat on the table, and you’re adjusting its yaw. Think of them like an aero-
plane: when it’s taking off, it increases its pitch to climb. When it’s doing a
victory roll, that’s literally it spinning along its roll axis; when it’s using its
rudder to turn like a car would, without rolling, that’s yaw.

Inertial sensing in Scratch
Start a new program in Scratch and load the Raspberry Pi Sense HAT ex-
tension, if it’s not already loaded. Start your program in the same way as be-
fore: drag a when clicked Events block onto your code area, then drag
a clear display block underneath it followed by dragging and editing a

set background to black and a set colour to white block. Next, drag a forever

182 · Chapter 7 · Physical computing with the Sense HAT

Figure 7-25 The spatial axes of the Sense HAT’s IMU

block to the bottom of your existing blocks and fill it with a say Hello! block.
To show a reading for each of the three axes of the IMU — pitch, roll, and yaw
— you’ll need to add join Operator blocks plus the corresponding Raspber-
ry Pi Sense HAT blocks. Remember to include spaces and commas, so that
the output is easy to read.

when clicked

clear display

set background to

set colour to

forever

say join Pitch: join pitch join , Roll: join roll join , Yaw: yaw

Click the green flag to run your program, and try moving the Sense HAT and
Raspberry Pi around — being careful not to dislodge any cables! As you tilt
the Sense HAT through its three axes, you’ll see the pitch, roll, and yaw values
change accordingly (Figure 7-26).

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 183

Figure 7-26 Displaying the pitch, roll, and yaw values

Inertial sensing in Python
Start a new program in Thonny and save it as Sense HAT Movement.py. Fill
in the usual starting lines, remembering to use sense_emu if you’re using the
Sense HAT emulator:

from sense_hat import SenseHat

sense = SenseHat()

sense.clear()

To use information from the IMU to work out the current orientation of the
Sense HAT on its three axes, type the following:

orientation = sense.get_orientation()

pitch = orientation["pitch"]

roll = orientation["roll"]

yaw = orientation["yaw"]

print("pitch {0} roll {1} yaw {2}".format(pitch, roll, yaw))

Click Run and you’ll see readings for the Sense HAT’s orientation split across
the three axes (Figure 7-27). Try rotating the Sense HAT and clicking Run
again. You should see the numbers change to reflect its new orientation.

The IMU can do more than measure orientation, though: it can also detect
movement. To get accurate readings for movement, the IMU needs to be read

184 · Chapter 7 · Physical computing with the Sense HAT

Figure 7-27 Showing the Sense HAT’s pitch, roll, and yaw values

frequently in a loop. Taking a single reading won’t give you any useful in-
formation when it comes to detecting movement. Delete everything after
sense.clear() then type the following code:

while True:

acceleration = sense.get_accelerometer_raw()

x = acceleration["x"]

y = acceleration["y"]

z = acceleration["z"]

You now have variables containing the current accelerometer readings for the
three spatial axes: X, or left and right; Y, or forwards and backwards; and Z,
or up or down. The numbers from the accelerometer sensor can be difficult to
read, so type the following to make them easier to understand by rounding
them to the nearest whole number:

x = round(x)

y = round(y)

z = round(z)

Finally, print the three values by typing the following line:

print("x={0}, y={1}, z={2}".format(x, y, z))

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 185

Click Run, and you’ll see values from the accelerometer printed in the Python
shell area (Figure 7-28). Unlike the values from your previous program, these
will print continuously. To stop them printing, click the red Stop button to
stop the program.

Figure 7-28 Accelerometer readings rounded to the nearest whole number

You may have noticed that the accelerometer is telling you that one of the
axes — the Z axis, if your Raspberry Pi is flat on the table — has an accelera-
tion value of 1.0 gravities (1G), yet the Sense HAT isn’t moving. That’s because
it’s detecting the Earth’s gravitational pull. Gravity is the force that is pulling
the Sense HAT down towards the centre of the Earth, and the reason why, if
you knock it off your desk, it’ll fall to the floor.

With your program running, try carefully picking the Sense HAT and your
Raspberry Pi up and rotating them around — but make sure not to dislodge
any of the cables! With the Raspberry Pi’s network and USB ports pointing to
the floor, you’ll see the values change so the Z axis reads 0G and the X axis
now reads 1G. Turn it again so the HDMI and power ports are pointing to the
floor, and now you’ll see that it’s the Y axis that reads 1G. If you do the op-
posite and orient the Raspberry Pi so that the HDMI port is pointing at the
ceiling, you’ll see -1G on the Y axis instead.

Using the knowledge that the Earth’s gravity is roughly 1G, along with your
understanding of the spatial axes, you can use readings from the accelerom-
eter to figure out which way is down — and, likewise, which way is up. You
can also use it to detect movement: try carefully shaking the Sense HAT and

186 · Chapter 7 · Physical computing with the Sense HAT

Raspberry Pi, and watch the numbers as you do. The harder you shake, the
greater the acceleration.

When you’re using sense.get_accelerometer_raw(), you’re telling the
Sense HAT to turn off the other two sensors in the IMU — the gyroscopic sen-
sor and the magnetometer — and return data purely from the accelerometer.
You can do the same thing with the other sensors too.

Find the line acceleration = sense.get_accelerometer_raw() and
change it to:

orientation = sense.get_gyroscope_raw()

Change the word acceleration on all three following lines to orientation.
Click Run, and you’ll see the orientation of the Sense HAT for all three axes,
rounded to the nearest whole number. Unlike the last time you checked
orientation, though, this time the data is only coming from the gyroscope,
without using the accelerometer or magnetometer. This can be useful if you
want to know the orientation of a moving Sense HAT on the back of a robot,
for example, without the movement confusing things. It’s also helpful if
you’re using the Sense HAT near a strong magnetic field.

Stop your program by clicking on the red Stop button. To use the magne-
tometer, delete everything from your program except for the first four lines,
then type the following below the while True line:

north = sense.get_compass()

print(north)

Run your program and you’ll see the direction of magnetic north printed re-
peatedly to the Python shell area. Carefully rotate the Raspberry Pi, and you’ll
see the heading change as the Sense HAT’s orientation relative to north shifts:
you’ve built a compass! If you have a magnet — a fridge magnet will do — try
moving it around the Sense HAT to see what that does to the magnetometer’s
readings.

CHALLENGE: AUTO-ROTATE

Using what you’ve learned about the LED matrix and the inertial measurement unit’s

sensors, can you write a program that rotates an image depending on the position of

the Sense HAT?

?

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 187

when clicked

clear display

set background to

set colour to

when joystick pushed up

say Hello! for 2 seconds

Joystick control
The Sense HAT’s joystick, found in the bottom-right corner, may be small, but
it’s surprisingly powerful: as well as being able to recognise inputs in four di-
rections — up, down, left, and right — it also has a fifth input, accessed by
pressing down on the joystick and using it like a push-button switch.

Joystick control in Scratch
Start a new program in Scratch with the Raspberry Pi Sense HAT extension
loaded. As before, drag a when green flag clear display block underneath it, fol-
lowed by dragging and editing a clear display block underneath. Then add a

set background to black and a set colour to white block.

In Scratch, the Sense HAT’s joystick maps to the cursor keys on the keyboard:
pushing the joystick up is equivalent to pressing the up-arrow key, and push-
ing it down is the same as pushing the down-arrow key. Pushing it left or right
does the same as the left and right arrow keys. Pressing the joystick down like
a push-button switch is equivalent to pressing the ENTER key.

Drag a when joystick pushed up block onto your code area. Then, to give it
something to do, drag a say Hello! for 2 seconds block under it.

Push the joystick upwards and you’ll see the Scratch cat say a cheery “Hello!”
Joystick control is only available on the physical Sense HAT. When using the
Sense HAT Emulator, use the corresponding keys on your keyboard to simu-
late joystick presses instead.

WARNING!

The Sense HAT joystick should only be used if you’ve fitted the spacers as described at

the start of this chapter. Without the spacers, pushing down on the joystick can flex the

Sense HAT board and damage both the Sense HAT and Raspberry Pi’s GPIO header.

!

188 · Chapter 7 · Physical computing with the Sense HAT

when clicked

clear display

set background to

set colour to

when joystick pushed up

say Joystick Up! for 2 seconds

when joystick pushed down

say Joystick Down! for 2 seconds

when joystick pushed left

say Joystick Left! for 2 seconds

when joystick pushed right

say Joystick Right! for 2 seconds

when joystick pushed centre

say Joystick Pushed! for 2 seconds

Next, change say Hello! to say Joystick Up! , and add Events and Looks
blocks until you have something to say for each of the five ways the joystick
can be pressed. Try pushing the joystick in various directions, and watch as
messages appear!

FINAL CHALLENGE

Can you use the Sense HAT’s joystick to control a Scratch sprite on the stage area?

Can you make it so that if the sprite collects another sprite, representing an object, the

Sense HAT’s LED matrix displays a message?

?

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 189

Joystick control in Python
Start a new program in Thonny and save it as Sense HAT Joystick. Begin
with the usual three lines that set up the Sense HAT and clear the LED ma-
trix — remembering to use sense_emu (in place of sense_hat) if you’re using
the emulator:

from sense_hat import SenseHat

sense = SenseHat()

sense.clear()

Next, set up an infinite loop:

while True:

Then tell Python to listen for inputs from the Sense HAT joystick with the fol-
lowing line, which Thonny will automatically indent for you:

for event in sense.stick.get_events():

Finally, add the following line — which, again Thonny will indent for you —
to actually do something when a joystick press is detected:

print(event.direction, event.action)

Click Run, and try pushing the joystick in various directions. You’ll see the
direction you’ve chosen printed to the Python shell area: up, down, left and
right; and middle for when you’ve pushed the joystick down like a push-
button switch.

You’ll also see that you’re given two events each time you push the joystick
once: one event, pressed, for when you first push in a direction; the other
event, released, for when the joystick returns to centre.

You can use this in your programs: think of a character in a game, which could
be made to start moving when the joystick is pressed in one direction, and
then made to stop as soon as it’s released.

You can also use the joystick to trigger functions, rather than being limited
to using a for loop. Delete everything below sense.clear(), and type the
following:

def red():

sense.clear(255, 0, 0)

def blue():

190 · Chapter 7 · Physical computing with the Sense HAT

sense.clear(0, 0, 255)

def green():

sense.clear(0, 255, 0)

def yellow():

sense.clear(255, 255, 0)

These functions change the whole Sense HAT LED matrix to a single colour:
red, blue, green, or yellow. This is going to make observing that your program
works extremely easy! To actually trigger them, you need to tell Python
which function goes with which joystick input. Type the following lines:

sense.stick.direction_up = red

sense.stick.direction_down = blue

sense.stick.direction_left = green

sense.stick.direction_right = yellow

sense.stick.direction_middle = sense.clear

Finally, the program needs an infinite loop — known as the main loop — in or-
der to keep running. This means you’ll have to keep watching for joystick in-
puts, rather than just running through the code you’ve written once and then
quitting. Type the following two lines:

while True:

pass

Your completed program should look like this:

from sense_hat import SenseHat

sense = SenseHat()

sense.clear()

def red():

sense.clear(255, 0, 0)

def blue():

sense.clear(0, 0, 255)

def green():

sense.clear(0, 255, 0)

def yellow():

sense.clear(255, 255, 0)

sense.stick.direction_up = red

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 191

sense.stick.direction_down = blue

sense.stick.direction_left = green

sense.stick.direction_right = yellow

sense.stick.direction_middle = sense.clear

while True:

pass

Click Run, and try moving the joystick: you’ll see the LEDs light up in glorious
colour. To turn the LEDs off, push the joystick like a push-button. The middle
direction is set to use the sense.clear() function to turn them all off. Con-
gratulations: you can capture input from the joystick!

Scratch project: Sense HAT Sparkler
Now you know your way around the Sense HAT, it’s time to put everything
you’ve learned together to build a heat-sensitive sparkler — a device which
is at its happiest when it’s cold and which gradually slows down the hotter it
gets.

Start a new Scratch project and add the Raspberry Pi Sense HAT extension,
if not already loaded. As always, begin with four blocks: start with

when clicked with a clear display block underneath. You’ll need a
set background to black , and a set colour to white , remembering you’ll have

to change the colours from their default settings.

Start by creating a simple, but artistic, sparkler. Drag a forever block onto
the code area, then fill it with a set pixel x 0 y 0 to colour block. Rather than
using set numbers, fill in each of the x, y, and colour sections of that block
with a pick random 1 to 10 Operators block.

The values 1 to 10 aren’t very useful here, so you need to do some editing. The
first two numbers in the set pixel block are the X and Y coordinates of the
pixel on the LED matrix, which means they should be numbered between 0
and 7. Change the first two blocks to read pick random 0 to 7 .

FINAL CHALLENGE

Can you use what you’ve learned to draw an image to the screen, then have it rotated

in whatever direction the joystick is pushed? Can you make the middle input switch

between more than one picture?

?

192 · Chapter 7 · Physical computing with the Sense HAT

The next section is the colour the pixel should be set to. When you’re using
the colour selector, the colour you choose is shown directly in the script
area; internally, though, the colours are represented by a number, and you
can use the number directly. Edit the last Pick random block to read

pick random 0 to 16777215 .

when clicked

clear display

set background to

set colour to

forever

set pixel x pick random 0 to 7 y pick random 0 to 7 to pick random 0 to 16777215

Click the green flag and you’ll see the LEDs on the Sense HAT begin to light up
in random colours (Figure 7-29). Congratulations: you’ve made an electronic
sparkler!

Figure 7-29 Lighting the pixels in random colours

The sparkler isn’t very interactive. To change that, start by dragging a
wait 1 seconds block so it’s under the set pixel block but within the
forever block. Drag a / Operators block over the 1, then type 10

in its second space. Finally, drag a temperature block over the first space in
the divide Operator block.

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 193

when clicked

clear display

set background to

set colour to

forever

set pixel x pick random 0 to 7 y pick random 0 to 7 to pick random 0 to 16777215

wait temperature / 10 seconds

Click the green flag and you’ll notice — unless you are somewhere very
cold — that the sparkler is considerably slower than before. That’s because
you’ve created a temperature-dependent delay: the program now waits the
current temperature divided by 10 number of seconds before each loop. If the
temperature in your room is 20°C, the program will wait two seconds before
looping; if the temperature is 10°C, it’ll wait one second; if it’s under 10°C, it’ll
wait less than a second.

If your Sense HAT is reading a negative temperature — below 0°C, the freez-
ing point of water — it’ll try to wait less than 0 seconds. Because that’s impos-
sible — without inventing time travel, anyway — you’ll see the same effect as
though it was waiting 0 seconds. Congratulations: you have learned how to
integrate the Sense HAT’s features into programs of your own!

Python project: Sense HAT Tricorder
Now you know your way around the Sense HAT, it’s time to put everything
you’ve learned together to build a tricorder — a device immediately familiar
to fans of a certain science-fiction franchise. The fictional tricorder uses dif-
ferent sensors to report on its surroundings.

Start a new project in Thonny and save it as Tricorder.py, then start with the
lines you need to use every time you begin a Sense HAT program in Python,
remembering to use sense_emu if you’re using the Sense HAT emulator:

from sense_hat import SenseHat

sense = SenseHat()

sense.clear()

Next, you need to start defining functions for each of the Sense HAT’s sen-
sors. Start with the inertial measurement unit by typing:

194 · Chapter 7 · Physical computing with the Sense HAT

def orientation():

orientation = sense.get_orientation()

pitch = orientation["pitch"]

roll = orientation["roll"]

yaw = orientation["yaw"]

Because you’re going to be scrolling the results from the sensor across the
LEDs, it makes sense to round the numbers so you don’t end up waiting for
dozens of decimal places. Rather than whole numbers, round them to one
decimal place by typing the following:

pitch = round(pitch, 1)

roll = round(roll, 1)

yaw = round(yaw, 1)

Finally, you need to tell Python to scroll the results to the LEDs, so the tri-
corder works as a hand-held device without needing to be connected to a
monitor or TV:

sense.show_message("Pitch {0}, Roll {1}, Yaw {2}".

format(pitch, roll, yaw))

Now that you have a full function for reading and displaying the orientation
from the IMU, you need to create similar functions for each of the other sen-
sors. Start with the temperature sensor:

def temperature():

temp = sense.get_temperature()

temp = round(temp, 1)

sense.show_message("Temperature: %s degrees Celsius" % temp)

Look carefully at the line which prints the result to the LEDs: the %s is known
as a placeholder, and gets replaced with the content of the variable temp. Us-
ing this, you can format the output nicely with a label, ‘Temperature:’, and a
unit of measurement, ‘degrees Celsius,’ which makes your program a lot more
friendly.

Next, define a function for the humidity sensor:

def humidity():

humidity = sense.get_humidity()

humidity = round(humidity, 1)

sense.show_message("Humidity: %s percent" % humidity)

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 195

Then the pressure sensor:

def pressure():

pressure = sense.get_pressure()

pressure = round(pressure, 1)

sense.show_message("Pressure: %s millibars" % pressure)

Finally, define a function for the compass reading from the magnetometer:

def compass():

for i in range(0, 10):

north = sense.get_compass()

north = round(north, 1)

sense.show_message("North: %s degrees" % north)

The short for loop in this function takes ten readings from the magnetometer
to ensure that it has enough data to give you an accurate result. If you find
that the reported value keeps shifting, try extending it to 20, 30, or even 100
loops to improve the accuracy further.

Your program now has five functions, each of which takes a reading from one
of the Sense HAT’s sensors and scrolls them across the LEDs. It needs a way to
choose which sensor you want to use, and the joystick is perfect for that.

Type the following:

sense.stick.direction_up = orientation

sense.stick.direction_right = temperature

sense.stick.direction_down = compass

sense.stick.direction_left = humidity

sense.stick.direction_middle = pressure

These lines assign a sensor to each of the five possible directions on the joy-
stick. Up reads from the orientation sensor; down reads from the magnetome-
ter; left reads from the humidity sensor; right from the temperature sensor;
and pressing the stick in the middle reads from the pressure sensor.

Finally, you need a main loop so the program will keep listening out for joy-
stick presses and not just immediately quit. At the very bottom of your pro-
gram, type the following:

while True:

pass

Your completed program should look like this:

196 · Chapter 7 · Physical computing with the Sense HAT

from sense_hat import SenseHat

sense = SenseHat()

sense.clear()

def orientation():

orientation = sense.get_orientation()

pitch = orientation["pitch"]

roll = orientation["roll"]

yaw = orientation["yaw"]

pitch = round(pitch, 1)

roll = round(roll, 1)

yaw = round(yaw, 1)

sense.show_message("Pitch {0}, Roll {1}, Yaw {2}".

format(pitch, roll, yaw))

def temperature():

temp = sense.get_temperature()

temp = round(temp, 1)

sense.show_message("Temperature: %s degrees Celsius" % temp)

def humidity():

humidity = sense.get_humidity()

humidity = round(humidity, 1)

sense.show_message("Humidity: %s percent" % humidity)

def pressure():

pressure = sense.get_pressure()

pressure = round(pressure, 1)

sense.show_message("Pressure: %s millibars" % pressure)

def compass():

for i in range(0, 10):

north = sense.get_compass()

north = round(north, 1)

sense.show_message("North: %s degrees" % north)

sense.stick.direction_up = orientation

sense.stick.direction_right = temperature

sense.stick.direction_down = compass

sense.stick.direction_left = humidity

sense.stick.direction_middle = pressure

while True:

pass

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 197

Click Run, and try moving the joystick to take a reading from one of the sensors
(Figure 7-30). When it has finished scrolling the result, press a different direc-
tion. Congratulations: you’ve built a hand-held tricorder that would make the
United Federation of Planets proud!

Figure 7-30 Each reading scrolls across the
display

For more Sense HAT projects, including an example of how to use the colour
sensor on Sense HAT V2, follow the links in Appendix D, Further reading.

198 · Chapter 7 · Physical computing with the Sense HAT

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 199

Chapter 8

Raspberry Pi Camera Modules
Connecting a Camera Module or HQ Camera to your Raspberry
Pi enables you to take high-resolution photos and shoot
videos, and create amazing computer vision projects.

If you’ve ever wanted to build something that can see for itself — known in
the robotics field as computer vision — then Raspberry Pi’s optional Camera
Module 3 (Figure 8-1), High Quality Camera (HQ Camera), or Global Shutter
Camera are must-have accessories. Small, square circuit boards with a thin
ribbon cable, the three Camera Modules connect to the Camera Serial Inter-
face (CSI) port on your Raspberry Pi and provide high-resolution still images
and moving video signals, which can be used as-is, or integrated into your
own programs.

Figure 8-1 Raspberry Pi Camera Module 3

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 201

Camera variants
There are multiple types of Raspberry Pi Camera Module available, and the
model you need will depend on what you’re capturing: the standard Camera
Module 3, the ‘NoIR’ version, the High Quality (HQ) Camera, and the Global
Shutter Camera. If you want to take normal pictures and video in well-lit en-
vironments, you should use the standard Camera Module 3, or the Camera
Module 3 Wide for a wider field of view.

If you want to be able to swap lenses and are looking for the best picture
quality, use the HQ Camera Module. The NoIR Camera Module 3 — so called
because it has no infrared (IR) filter — is designed for use with infrared light
sources to take pictures and video in total darkness, and is also available in
a wide-angle version. If you’re building a nest box, security camera, or oth-
er project involving night vision, you want the NoIR version — but remember
to buy an infrared light source at the same time! Finally, the Global Shutter
Camera captures the entire image at once, rather than line-by-line, making it
suitable for high-speed photography and computer vision work.

Raspberry Pi Camera Module 3
The Raspberry Pi Camera Module 3, in both standard and NoIR versions, is
built around a Sony IMX708 image sensor. This is a 12 megapixel sensor, mean-
ing it captures images with up to 12 million pixels in them. This results in a
maximum image size of 4608 pixels wide by 2592 pixels tall. There are two lens
options for Raspberry Pi Camera Module 3: the standard lens, which captures
a field of view 75 degrees wide; and the wide-angle lens, which has a 120 de-
gree field of view.

In addition to still photographs, the Raspberry Pi Camera Module 3 can capture
video footage at Full HD resolution (1080p) at a rate of 50 frames per second
(50 fps). For smoother motion, or even to create a slow-motion effect, the cam-
era can be set to capture at a higher frame rate by lowering the resolution: you
get 100 fps at 720p resolution and 120 fps at 480p (VGA) resolution. The module
has one last trick up its sleeve compared to earlier versions: it offers autofocus,
meaning it can automatically adjust the focal point of the lens for close-up or
distant subjects.

RASPBERRY PI 400

The Raspberry Pi Camera Modules are not compatible with the Raspberry Pi 400

desktop computer. You can use USB webcams as an alternative, but you won’t be able

to use the software tools shown in this chapter with a Raspberry Pi 400.

?

202 · Chapter 8 · Raspberry Pi Camera Modules

Raspberry Pi High Quality Camera
The High Quality Camera uses a 12.3 megapixel Sony IMX477 sensor. This
sensor is larger than the one in the standard and NoIR Camera Modules —
meaning it can gather more light which leads to higher-quality images. Unlike
the Camera Modules, though, the HQ Camera doesn’t include a lens, without
which it can’t take any pictures or videos. You can use any lens with a C or CS
mount, and you can use other lens mounts with an appropriate C or CS mount
adapter. An alternative version of the High Quality Camera is available for use
with M12-mount lenses.

Raspberry Pi Global Shutter Camera
The Global Shutter Camera uses a 1.6 megapixel Sony IMX296 sensor. Al-
though it provides lower resolution than either the standard Raspberry Pi
Camera Module or the High Quality Camera, its ability to capture the entire
image at once means it excels at capturing rapidly-moving subjects without
the distortion you can get with a rolling shutter camera. Like the High Qual-
ity Camera, it comes without a lens, and supports the same C and CS mount
lenses; unlike the High Quality Camera, there is no M12-mount version at the
time of writing.

Raspberry Pi Camera Module 2
The earlier Raspberry Pi Camera Module 2 and its NoIR variant are based on
a Sony IMX219 image sensor. This is an 8 megapixel sensor, so it can take pic-
tures with up to 8 million pixels in them measuring 3280 pixels wide by 2464
tall. Along with still images, the Camera Module can capture Full HD resolu-
tion (1080p) video at 30 frames per second (30 fps) with higher frame rates
available at lower resolutions: 60fps for 720p video footage and up to 90 fps
for 480p (VGA) footage.

RASPBERRY PI ZERO AND RASPBERRY PI 5

All models of the Raspberry Pi Camera Module are compatible with Raspberry Pi Zero

2 W; newer versions of the original Raspberry Pi Zero and Zero W; and Raspberry Pi 5.

If you’re using a Raspberry Pi 5, you’ll need a different ribbon cable than the one you

might have used with Raspberry Pi 4 and earlier models.

Ask your favourite Authorised Reseller for a suitable cable: the wider end goes into

the camera, while the narrower end goes into Raspberry Pi.

?

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 203

Installing the camera
Like any hardware add-on, the Camera Module or HQ Camera should only be
connected to (or disconnected from) your Raspberry Pi when the power is off,
and the power cable is unplugged. If your Raspberry Pi is turned on, choose
Shutdown from the Raspberry Pi menu, wait for it to power off, and unplug it.

In most cases, the ribbon cable will already be connected to the Camera Mod-
ule or HQ Camera. If it isn’t, turn your camera board upside-down so the sen-
sor is on the bottom, and look for a flat plastic connector. Carefully hook
your fingernails around the sticking-out edges and pull outwards until the
connector pulls part-way out. Slide the ribbon cable, with the silver or gold
edges downwards and the blue plastic facing upwards, under the flap you just
pulled out, then push the flap gently back into place with a click (Figure 8-2);
it doesn’t matter which end of the cable you use. If the cable is installed prop-
erly, it will lie straight and won’t come out if you give it a gentle tug. If it’s not
seated correctly, pull the flap out and try again.

Figure 8-2 Connecting the ribbon cable to the Camera Module

Install the other end of the cable the same way. Find the lower of the two
camera/display ports, marked ‘CAM/DISP 0,’ on Raspberry Pi 5 or the single
camera port on Raspberry Pi 4, Raspberry Pi Zero 2 W, and earlier models, and
pull the small plastic cover up. If your Raspberry Pi is installed in a case, you
might find it easier to remove it first.

204 · Chapter 8 · Raspberry Pi Camera Modules

With Raspberry Pi 5 positioned so the GPIO header is to the right and the HD-
MI ports are to the left, slide the ribbon cable in so the silver or gold edges are
to your right and the blue plastic is to your left (Figure 8-3). Then gently push
the flap back into place.

For Raspberry Pi 4 and earlier models, the ribbon cable should be the other
way around, with the silver or gold edges to your left and the blue plastic to
your right. If you are using a Raspberry Pi Zero 2 W or an older Raspberry Pi
Zero, the silver or gold edges should be pointing down towards the table and
the blue plastic up towards the ceiling. If the cable is installed properly, it’ll
sit straight and won’t come out if you give it a gentle tug. If it’s not seated cor-
rectly, pull the flap out and try again.

Figure 8-3 Connecting the ribbon cable to the Camera/CSI port on Raspberry Pi

The Camera Module may come with a small piece of blue plastic covering the
lens to protect it from scratches during manufacturing, shipping, and instal-
lation. Find the small flap of loose plastic and pull the cover gently off the
lens to get the camera ready for use.

Connect the power supply back to Raspberry Pi and let it load Raspberry Pi OS.

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 205

Testing the camera
To confirm that your Camera Module or HQ Camera is properly installed, you
can use the libcamera tools. These are designed to capture images from the
camera using Raspberry Pi’s command-line interface (CLI).

Unlike the programs you’ve been using so far, you won’t find the libcamera
tools in the menu. Instead, click on the Raspberry Pi icon to load the menu,
choose the Accessories category, and click on Terminal. A black window with
green and blue text will appear (Figure 8-4): this is the terminal, which allows
you to access the command-line interface.

Figure 8-4 Open a Terminal window to enter commands

To capture an image with the camera, type the following into the terminal:

libcamera-still -o test.jpg

As soon as you hit ENTER, you’ll see a window with a view of what the camera
sees appear on-screen (Figure 8-5). This is called the live preview and, unless
you tell libcamera-still otherwise, it will last for five seconds. After those five
seconds are up, the camera will capture a single still picture and save it in
your home folder with the name test.jpg. If you want to capture another, type

ADJUSTING FOCUS

All versions of Raspberry Pi Camera Module 3 include a motorised autofocus system,

which can adjust the focal point of the lens between close-up and distant objects.

Raspberry Pi Camera Module 2 uses a lens which includes limited manual focus ad-

justment. It is packaged with a small tool for turning the lens and adjusting the focus.

?

206 · Chapter 8 · Raspberry Pi Camera Modules

the same command again — but make sure you change the output file name
after the -o, or you’ll save over the top of your first picture!

Figure 8-5 The live preview from the camera

If the live preview was upside-down, you need to tell libcamera-still that the
camera is rotated. The Camera Module is designed to have the ribbon cable
coming out of the bottom edge. If it’s coming out of the sides or the top, as
with some third-party camera mount accessories, you can rotate the image
by 90, 180, or 270 degrees using the -rotation switch. For a camera mounted
with the cable coming out of the top, use the following command:

libcamera-still --rotation 180 -o test.jpg

If the ribbon cable is coming out of the right-hand edge, use a rotation value
of 90 degrees; if it’s coming out of the left-hand edge, use 270 degrees. If your
original capture was at the wrong angle, try another using the -rotation

switch to correct it.

To see your picture, open the File Manager from the Accessories category
of the Raspberry Pi menu: the image you’ve taken, called test.jpg, will be
in your home/<username> folder. Find it in the list of files, then double-click
the picture to load it in an image viewer (Figure 8-6). You can also attach the
image to emails, upload it to websites via the browser, or drag it to an exter-
nal storage device.

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 207

Figure 8-6 Opening the captured image

Raspberry Pi Camera Module 3 includes the ability to adjust the focal point
of the image using a motorised autofocus system. This is enabled by default:
when you capture a picture, the camera module will automatically adjust its
focus to make the picture as clear as possible using what is known as contin-
uous autofocus.

As the name suggests, continuous autofocus constantly adjusts the focal
point right up until the moment the picture is captured. If you’re capturing
multiple pictures, or shooting video, it will continue to adjust the focus as you
work. If something moves between the camera and the subject, the camera
will switch its focus automatically.

There are other autofocus modes you can use if continuous autofocus isn’t
delivering the results you need. You can read about these in the Advanced
camera settings reference section at the end of this chapter.

208 · Chapter 8 · Raspberry Pi Camera Modules

Capturing video
Your Camera Module isn’t restricted to just capturing still images: it can also
record video using a tool called libcamera-vid.

To record a short video, type the following in the terminal:

libcamera-vid -t 10000 -o test.h264

As before, you’ll see the preview window appear. This time, though, instead of
counting down and capturing a single still image, the camera will record ten
seconds of video to a file. When the recording is finished, the preview win-
dow will automatically close.

If you want to capture a longer video, change the number after -t to the
length of recording you’re after in milliseconds. For example, to take a ten-
minute recording you would type:

libcamera-vid -t 600000 -o test2.h264

To play your video back, find it in the file manager and double-click the video
file to load it in the VLC video player (Figure 8-7). Your video will open and
begin playing, but you may notice that the playback isn’t smooth. There’s a
fix for this: adding timing information to your recording.

Video captured by libcamera-vid comes in a format called a bitstream. The
way a bitstream works is a bit different from the video files you might be
used to. Usually, files contain multiple parts: the video, any audio captured
alongside the video, timecode information about when each frame should be
displayed, and additional information known as metadata. A bitstream is dif-
ferent. It has none of this: it’s just pure video data.

MAKE ROOM, MAKE ROOM

Recording video can take a lot of storage space. If you’re planning to record a lot of

video, make sure you have a large microSD card. You could also invest in a USB flash

drive or other external storage.

By default, the libcamera tools will save files to whatever folder they’re launched from.

So make sure to change directories so you are saving to your chosen storage device.

You can read about changing directories in the terminal in Appendix C, The command-

line interface.

?

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 209

Figure 8-7 Opening the captured video

To ensure your video files play back on as many software platforms as possi-
ble, including software running on computers other than Raspberry Pi, you’ll
need to process it into a container. For this, you’ll need some missing infor-
mation: frame timing.

In the terminal, record a new video — but this time tell libcamera-vid to
record timing information into a file called timestamps.txt:

libcamera-vid -t 10000 --save-pts timestamps.txt -o test-time.h264

When you open the video folder in the file manager, you’ll see two files: the
video bitstream, test-time.h264, and the timestamps.txt file (Figure 8-8).

To combine these two files into a single container suitable for playback on
other devices, use the mkvmerge tool. This takes the video, merges it with the
timestamps, and outputs a video container file known as a Matroska Video file
or MKV.

210 · Chapter 8 · Raspberry Pi Camera Modules

Figure 8-8 A video file with a separate timestamp file

In the command line, type (the \ is a special character that lets you break the
command across two lines):

mkvmerge --timecodes 0:timestamps.txt test-time.h264 \

-o test-time.mkv

You’ll now have a third file, test-time.mkv. Double-click this file in the file
manager to load it in VLC, and you’ll see the video you recorded play back
without skipping or dropping any frames. If you want to transfer the video to
a removable drive for playback on another computer you only need the MKV
file, and can delete the H264 and TXT files.

Always remember to save timestamps with your video if you want to create
a file that will play back properly on as many computers as possible. It’s not
easy to go back and create them after recording!

Time-lapse photography
There’s another trick your camera module can pull off: time-lapse photog-
raphy. In time-lapse photography, still pictures are taken over a period of
time at regular intervals, to capture changes that happen too slowly for the
naked eye to observe. It’s a great tool for watching how the weather changes
over the period of a day, or how a flower grows and blooms over a peri-
od of months. You can even use time-lapse techniques to make your own
stop-motion animation!

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 211

To start a time-lapse photography session, type the following in the terminal
to make a new directory and change into it. This helps keep all the files you
capture neatly in one place:

mkdir timelapse

cd timelapse

Then begin capturing by typing:

libcamera-still --width 1920 --height 1080 -t 100000 \

--timelapse 10000 -o %05d.jpg

The output filename is a little different this time around: %05d tells libcamera-
still to use numbers, starting at 00000 and counting upwards, as the filename.
Without this, it would automatically overwrite older pictures every time it
took a new one, and you’d only have one picture to show for your efforts.

The --width and --height switches control the resolution of the images cap-
tured. In this case, we’re setting the images to a width of 1920 pixels and a
height of 1080 pixels — the same resolution as a Full HD video file.

The -t switch acts as it did before, setting up a timer for how long the camera
should run. In this case, it’s 100,000 milliseconds (100 seconds).

Finally, the --timelapse switch tells libcamera-still how long to wait be-
tween pictures. Here it’s set to 10,000 milliseconds (ten seconds). Because it
won’t take any photos until the first ten seconds have elapsed, you’ll get a to-
tal of nine photos.

Leave libcamera-still running for 100 seconds, then open the timelapse direc-
tory in your file manager. You’ll see nine individual photos, each labelled with
a number started at 00000 (Figure 8-9).

To combine these pictures into an animation, use the ffmpeg tool. Type:

ffmpeg -r 0.5 -i %05d.jpg -r 15 animation.mp4

This tells ffmpeg to interpret the pictures you captured as though they were a
video running at 0.5 frames per second, and use them to produce an animated
video running at 15 frames per second.

Double-click the file animation.mp4 to play it back in VLC. You’ll see each of
the photos you took appear one after the other (Figure 8-10).

212 · Chapter 8 · Raspberry Pi Camera Modules

Figure 8-9 Photos taken during a time-lapse session

Figure 8-10 Playing back a timelapse animation

To make the animation faster, try changing the input frame rate from 0.5
frames per second to 1 or more; to make it slower, try decreasing it to 0.2 or
lower.

Why not try making your own stop-motion video? Position toys in front of the
camera and begin a time-lapse session, then move them into new positions

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 213

just after each photo has been taken. Remember to move your hands out of
shot before each photo is taken!

Advanced camera settings
Both libcamera-still and libcamera-vid support a range of advanced settings,
giving you finer control over settings like resolution — the size of the image or
video you capture. Higher-resolution images and videos are of a higher qual-
ity, but take up a correspondingly larger amount of storage space — so be
careful when experimenting!

libcamera-still and libcamera-vid
The settings below can be used with both libcamera-still and libcamera-vid
by adding them to the command you type at the terminal.

--autofocus-mode

Configures the autofocus system on Raspberry Pi Camera Module 3.
Possible options are: continuous, the default mode; manual, which dis-
ables autofocus entirely; and auto, which performs a single autofocus
operation when the camera first starts up. This setting has no effect on
other Camera Module versions.

--autofocus-range

Sets the range for the Raspberry Pi Camera Module 3 autofocus sys-
tem. If you find the autofocus system is struggling to lock on to your
subject, changing the range here can help. Possible options are: nor-
mal, the default setting; macro, which prioritises close-up objects; and
full, which can focus both extremely close-up and all the way to the
horizon.

--lens-position

Manually controls the focal point of the lens, for use with the --auto-

focus-mode manual setting. This allows you to set the point where the
lens focuses using a unit called dioptres, which are equal to one divid-
ed by the focal point distance in metres. To set the camera to focus on
0.5 m (50 cm), for example, use --lens-position 2; to set it to focus at
10m, use --lens-position 0.1. A value of 0.0 represents a focal point
of infinity — the farthest the camera can focus.

214 · Chapter 8 · Raspberry Pi Camera Modules

--width --height

Sets the image or video resolution. To capture a Full HD (1920×1080)
video, for example, use these arguments with libcamera-vid:

-t 10000 --width 1920 --height 1080 -o bigtest.h264

--rotation

Rotates the image from 0 degrees, the default, through 90, 180, and 270
degrees. If your camera is mounted so the ribbon cable isn’t coming out
of the bottom, this setting will let you capture images and video the
right way up.

--hflip --vflip

Flips the image or video along the horizontal axis — like a mirror — and/
or the vertical axis.

--sharpness

Allows you to make the captured image or video look clearer by apply-
ing a sharpening filter. Values above 1.0 increase the sharpness above
the default; values below 1.0 decrease the sharpness.

--contrast

Increases or decreases the contrast of the captured image or video. Val-
ues above 1.0 increase the contrast above the default. Values below 1.0
decrease the contrast.

--brightness

Increases or decreases the brightness of the image or video. Decreasing
the value from the default of 0.0 will make the image darker until you
reach the minimum value of -1.0, a completely black image. Increasing
the value will make the image lighter until you reach the maximum value
of 1.0, a completely white image.

--saturation

Increases or decreases the image or video’s colour saturation. Decreas-
ing the value from the default 1.0 will make colours more muted until
you reach the minimum value of 0.0, a completely greyscale image with
no colour at all. Values above 1.0 will make the colours more vibrant.

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 215

--ev

Sets an exposure compensation value, from -10 to 10, controlling how
the camera’s gain control works. Usually, the default value of 0 gives
best results. If your camera is capturing images that are too dark, you
can increase the value; if they’re too light, decrease the value.

--metering

Sets the metering mode for the automatic exposure and automatic
gain controls. The default value, centre, usually provides the best re-
sults; you can override this to choose spot or average metering if
you’d prefer.

--exposure

Switches between the default exposure mode, normal, and a sport ex-
posure mode designed for fast-moving subjects.

--awb

Allows you to change the automatic white balance algorithm from the
default auto mode to: incandescent, tungsten, fluorescent, indoor,
daylight, or cloudy.

libcamera-still
The following options are available in libcamera-still

-q

Sets the quality of the captured JPEG image, from 0 to 100 where 0 is
minimum quality and the smallest file size and 100 is maximum quality
and the largest file size. The default quality is 93.

--datetime

Uses the current date and time — in the format two-digit month, two-
digit day, minutes, hours, seconds — as the output filename. Use instead
of -o.

--timestamp

Similar to --datetime, but sets the output filename to the number of
seconds since the start of 1970 — known as the UNIX epoch.

216 · Chapter 8 · Raspberry Pi Camera Modules

-k

Captures a still image when you press the Enter key, rather than auto-
matically capturing after a delay. If you want to cancel a capture, type
xx followed by ENTERENTER. Works best with the timeout, -t, set to 0. libcam-
era-vid has a similar -k switch, but it works a little differently, and us-
es the Enter key to toggle between recording and pausing, starting in
recording mode. When you’ve finished, type xx followed by ENTERENTER to
quit.

DIGGING DEEPER

This chapter covers the most common switches for the libcamera apps, but there are

plenty more. A full technical rundown of libcamera, including how it differs from the

older raspivid and raspistill applications, is available at rptl.io/camera-software.

?

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 217

http://rptl.io/camera-software

Chapter 9

Raspberry Pi Pico and Pico W
Raspberry Pi Pico and Pico W bring a whole new dimension to
your physical computing projects.

Raspberry Pi Pico and Pico W are microcontroller development boards. They’re
designed for experimenting with physical computing using a special type of
processor: a microcontroller. The size of a stick of gum, Raspberry Pi Pico and
Pico W pack a surprising amount of power thanks to the chip at the centre of
the board: an RP2040 microcontroller.

Raspberry Pi Pico and Pico W aren’t designed to replace Raspberry Pi, which
is an entirely different class of device known as a single-board computer. You
might use Raspberry Pi to play games, write software, or browse the web, as
you’ve seen earlier in this book. Raspberry Pi Pico is designed for physical
computing projects, where it is used to control anything from LEDs and but-
tons to sensors, motors, and even other microcontrollers.

You can do physical computing work with your Raspberry Pi, too, thanks
to its general-purpose input/output (GPIO) pins, but there are advantages
to using a microcontroller development board instead of a single-board com-
puter. Raspberry Pi Pico is smaller, cheaper, and offers some features specific
to physical computing, like high-precision timers and programmable input/
output systems.

This chapter isn’t designed to be an exhaustive guide to what you can do with
Raspberry Pi Pico and Pico W, and you don’t need to buy a Pico to get the
most out of your Raspberry Pi. If you already have a Raspberry Pi Pico or Pico
W, or would just like to learn more about them, this chapter will serve as an
introduction to their key features.

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 219

For a full view of the features of Raspberry Pi Pico and Pico W, pick up the
book Get started with MicroPython on Raspberry Pi Pico.

A guided tour of Raspberry Pi Pico
Raspberry Pi Pico — ‘Pico’ for short — is a lot smaller than even Raspberry Pi
Zero, the most compact of Raspberry Pi’s single-board computer family. De-
spite this, it includes a lot of features — all accessible using the pins around
the edge of the board. It’s available in two versions, Raspberry Pi Pico and
Raspberry Pi Pico W; you’ll see the difference between the two later.

Figure 9-1 shows your Raspberry Pi Pico as seen from above. If you look at
the longer edges, you’ll see gold-coloured sections with small holes. These are
the pins which provide the RP2040 microcontroller with connections to the
outside world — known as its input/output (I/O).

Figure 9-1 The top of the board

The pins on your Pico are very similar to the pins that make up the general-
purpose input/output (GPIO) header on your Raspberry Pi — but while most
Raspberry Pi single-board computers come with the physical metal pins al-
ready attached, Raspberry Pi Pico and Pico W do not.

If you want to buy a Pico with headers mounted, look for Raspberry Pi Pico H
and Pico WH instead. There’s a good reason to offer models without headers
attached: look at the outer edge of the circuit board and you’ll see it’s bumpy,
with little circular cut-outs (Figure 9-2).

These bumps create what is called a castellated circuit board, which can be
soldered on top of other circuit boards without using any physical metal pins.
It’s very helpful in builds where you need to keep the height to a minimum,
making for a smaller finished project. If you buy an off-the-shelf gadget pow-
ered by Raspberry Pi Pico or Pico W, it’ll almost certainly be fitted using the
castellations.

220 · Chapter 9 · Raspberry Pi Pico and Pico W

Figure 9-2
Castellation

Figure 9-3
RP2040 chip

The holes just inwards from the bumps are to accommodate 2.54mm male pin
headers. You’ll recognise them as the same type of pins used on the bigger
Raspberry Pi’s GPIO header. By soldering these in place pointing downwards,
you can push your Pico into a solderless breadboard to make connecting and
disconnecting new hardware as easy as possible — great for experiments and
rapid prototyping!

The chip at the centre of your Pico (Figure 9-3) is an RP2040 microcontroller.
This is a custom integrated circuit (IC), designed and built by Raspberry Pi to
operate as the brains of your Pico and other microcontroller-based devices.
If you look at it closely, you’ll see a Raspberry Pi logo etched into the top of
the chip along with a series of letters and numbers which let engineers track
when and where the chip was made.

At the top of your Pico is a micro USB port (Figure 9-4). This provides power
to make your Pico run, and also sends and receives data that lets your Pico
talk to a Raspberry Pi or another computer via its USB port. This is how you’ll
load programs onto your Pico.

If you hold your Pico up and look at the micro USB port head-on, you’ll see
it’s shaped so it’s narrower at the bottom and wider at the top. Take a micro
USB cable, and you’ll see its connector is the same.

The micro USB cable will only go into the micro USB port on your Pico one
way up. When you’re connecting it, make sure to line the narrow and wide
sides up the right way around — you could damage your Pico if you try to
brute-force the micro USB cable in the wrong way up!

Just below the micro USB port is a small button marked ‘BOOTSEL’ (Figure
9-5). ‘BOOTSEL’ is short for boot selection, which switches your Pico between
two start-up modes when it’s first switched on. You’ll use the boot selection
button later, as you get your Pico ready for programming.

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 221

Figure 9-4
micro USB port

Figure 9-5
Boot selection switch

At the bottom of your Pico are three smaller gold pads with the word ‘DEBUG’
above them (Figure 9-6). These are designed for debugging, or finding errors,
in programs running on the Pico, using a special tool called a debugger. You
won’t need to use the debug header at first, but you may find it useful as
you write larger and more complicated programs. On some Raspberry Pi Pico
models, the debug pads are replaced by a small, three-pin connector.

Figure 9-6
Debug pads

Turn your Pico over and you’ll see the underside has writing on it (Figure 9-7).
This printed text is known as a silk-screen layer, and labels each of the pins
with its core function. You’ll see things like ‘GP0’ and ‘GP1’, ‘GND’, ‘RUN’, and
‘3V3’. If you ever forget which pin is which, these labels will tell you — but
you won’t be able to see them when the Pico is pushed into a breadboard, so
we’ve printed full pinout diagrams in this book for easier reference.

You might have noticed that not all the labels line up with their pins. The
small holes at the top and bottom of the board are mounting holes, designed

222 · Chapter 9 · Raspberry Pi Pico and Pico W

Figure 9-7 Labelled underside

to allow you to fix your Pico to projects more permanently, using screws or
nuts and bolts. Where the holes get in the way of the labelling, the labels are
pushed further up or down the board: looking at the top-right. So ‘VBUS’ is
the first pin on the left, ‘VSYS’ the second, and ‘GND’ the third.

You’ll also see some flat, gold pads labelled with ‘TP’ and a number. These are
test points, and are designed for engineers to quickly check that a Raspber-
ry Pi Pico is working after it has been assembled at the factory — you won’t
be using them yourself. Depending on the test pad, the engineer might use a
multimeter or an oscilloscope to check that your Pico is working properly be-
fore it’s packaged up and shipped to you.

If you have a Raspberry Pi Pico W or Pico WH, you’ll find another piece of
hardware on the board: a silver metal rectangle (Figure 9-8). This is a shield
for a wireless module, like the one on Raspberry Pi 4 and Raspberry Pi 5,
which can be used to connect your Pico to a Wi-Fi network or to Bluetooth
devices. It’s connected to a small antenna which sits at the very bottom of the
board — which is why you’ll find the debug pads or connector closer to the
middle of the board on Raspberry Pi Pico W and Pico WH.

Figure 9-8 The Raspberry Pi Pico W wireless module and antenna

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 223

Header pins
When you unpack your Raspberry Pi Pico or Pico W, you’ll notice that it is
completely flat. There are no metal pins sticking out from the sides, like you’d
find on the GPIO header of your Raspberry Pi or on the Raspberry Pi Pico H
and Pico WH. You can use the castellations to attach your Pico to another cir-
cuit board, or to directly solder wires for a project where your Pico will be
permanently fixed in place.

The easiest way to use your Pico, though, is to connect it to a breadboard —
and for that, you’ll need to attach pin headers. Putting pin headers on Rasp-
berry Pi Pico requires a soldering iron, which heats up the pins and pads so
that they can be connected using a soft metal alloy called solder.

For the introductory projects in this chapter, you won’t need to connect any
pins to your Pico. If you want to build more complicated projects, though, you
can find out how to safely solder the pins into place in Chapter 1 of Get Start-
ed with MicroPython on Raspberry Pi Pico. You can also check to see if your
favourite Raspberry Pi reseller stocks a version of Raspberry Pi Pico with the
header pins already soldered on. These are known as Raspberry Pi Pico H and
Raspberry Pi Pico WH for the standard and Wi-Fi versions respectively.

Installing MicroPython
Like your Raspberry Pi, you can program Raspberry Pi Pico in Python. Be-
cause it’s a microcontroller rather than a single-board computer, though, it
needs a special version known as MicroPython.

MicroPython works just like normal Python, and you can use the same Thon-
ny IDE as when programming Raspberry Pi. There are some features of reg-
ular Python missing in MicroPython, however, and other features are added
such as special libraries for microcontrollers and their peripherals.

Before you can program your Pico in MicroPython, you need to download and
install the firmware. Start by plugging a micro USB cable into the micro USB
port on your Pico — make sure it’s the right way up before gently pushing it
in the rest of the way.

WARNING

To install MicroPython onto your Pico, you’ll need to download it from the internet.

You’ll only have to do this once: after MicroPython is installed, it will stay on your Pico

unless you decide to replace it with something else in the future.

!

224 · Chapter 9 · Raspberry Pi Pico and Pico W

Hold down the ‘BOOTSEL’ button on the top of your Pico. Then, while still
holding it down, connect the other end of the micro USB cable to one of the
USB ports on your computer. Count to three, then let go of the button.

After a few more seconds you should see your Pico appear as a removable
drive, as though you’d connected a USB flash drive or external hard drive. On
a Raspberry Pi, you’ll see a pop-up asking if you’d like to open the drive in the
File Manager. Make sure Open in File Manager is selected and click OK.

In the File Manager window, you’ll see two files on your Pico (Figure 9-9):
INDEX.HTM and INFO_UF2.TXT. The second file contains information about
your Pico, such as the version of the bootloader it’s currently running. The
first file, INDEX.HTM, is a link to the Raspberry Pi Pico website. Double-click
on this file or open your web browser and type rptl.io/microcontroller-docs
into the address bar.

Figure 9-9 You’ll see two files on your Raspberry Pi Pico

When the web page opens, you’ll see information about Raspberry Pi’s mi-
crocontroller and development boards, including Raspberry Pi Pico and Pi-
co W. Click on the MicroPython box to go to the firmware download page.
Scroll down to the section labelled Drag-and-Drop MicroPython, as shown

NOTE

On macOS, you may be asked whether you want to “Allow accessory to connect”

when you plug the Pico into your computer. You will need to click Allow to permit it.

After you install MicroPython onto your Pico, macOS may ask the question a second

time, because it now looks like a different device.

?

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 225

http://rptl.io/microcontroller-docs

in Figure 9-10, and find the link for the version of MicroPython for your
board. There’s one for Raspberry Pi Pico and Pico H, and another for Rasp-
berry Pi Pico W and Pico WH. Click on the link to download the appropriate
UF2 file. If you accidentally download the wrong file, don’t worry; you can
come back to the page at any time and flash new firmware onto your device
using the same process.

Figure 9-10 Click the link to download the MicroPython firmware

Open a new File Manager window, then navigate to your Downloads folder and
find the file you just downloaded. It will be called ‘rp2-pico’ or ‘rp2-pico-w’
followed by a date, some text and numbers which are used to tell different
firmware builds apart, along with the extension ‘uf2’.

Click and hold the mouse button on the UF2 file, then drag it to the other
window that’s open on your Pico’s removable storage drive. Hover it over that
window and let go of the mouse button to drop the file onto your Pico, as
shown in Figure 9-11.

After a few seconds you’ll see your Pico drive window disappear from File
Manager, Explorer, or Finder, and you may also see a warning that a drive
was removed without being ejected. Don’t worry, that’s supposed to happen!

NOTE

To find the Downloads folder on your Raspberry Pi, click the Raspberry Pi menu,

choose Accessories, and open the File Manager. Next, look for Downloads in the list

of folders to the left of the File Manager window. You may have to scroll down the list

to find it, depending on how many folders you have on your Raspberry Pi.

?

226 · Chapter 9 · Raspberry Pi Pico and Pico W

Figure 9-11 Drag the MicroPython firmware file to your Raspberry Pi Pico

When you dragged the MicroPython firmware file onto your Pico, you told it
to flash the firmware onto its internal storage. To do that, your Pico switches
out of the special mode you put it in with the ‘BOOTSEL’ button, flashes the
new firmware, and then loads it — meaning that your Pico is now running
MicroPython.

Congratulations: you’re now ready to get started with MicroPython on your
Raspberry Pi Pico!

FURTHER READING

The webpage linked from INDEX.HTM isn’t just a place to download MicroPython. It

also hosts plenty of additional resources. Click on the tabs and scroll to access

guides, projects, and the databook collection — a bookshelf of detailed technical doc-

umentation covering everything from the inner workings of the RP2040 microcon-

troller which powers your Pico, to programming it in both the Python and C/C++

languages.

?

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 227

Your Pico’s pins
Your Pico talks to hardware through the series of pins along both its edges.
Most work as programmable input/output (PIO) pins, meaning they can be pro-
grammed to act as either an input or an output, and have no preset purpose
of their own until you assign one. Some pins have extra features and alterna-
tive modes for communicating with more complicated hardware; others have
a specific purpose, providing connections for things like power.

Raspberry Pi Pico’s 40 pins are labelled on the underside of the board, with
three also labelled with their numbers on the top of the board: Pin 1, Pin 2,
and Pin 39. These top labels help you remember how the numbering works:
Pin 1 is at the top-left as you look at the board from above, with the micro
USB port to the upper side. Pin 19 is the bottom-left, Pin 20 the bottom-right,
and Pin 39 one below the top-right with the unlabelled Pin 40 above it. The
labelling on the underside is more thorough, but you won’t be able to see it
when your Pico is plugged into a breadboard!

Figure 9-12 The Raspberry Pi Pico’s pins, seen from the top
of the board

On the Raspberry Pi Pico, pins are usually referred to by their functions (see
Figure 9-12) rather than by number. There are several categories of pin types,
each of which has a particular function:

▶ 3V3 — 3.3 volts power — A source of 3.3V power generated from the
VSYS input. This power supply can be switched on and off using the
3V3_EN pin above it, which also switches your Pico off.

228 · Chapter 9 · Raspberry Pi Pico and Pico W

▶ VSYS — ~2-5 volts power — A pin directly connected to your Pico’s
internal power supply, which cannot be switched off without also
switching the Pico off.

▶ VBUS — 5 volts power — A source of 5V power taken from your Pico’s
micro USB port, and used to power hardware which needs more than
3.3V.

▶ GND — 0 volts ground — A ground connection, used to complete a cir-
cuit connected to a power source. Several GND pins are dotted around
your Pico to make wiring easier.

▶ GPxx — General-purpose input/output pin number ‘xx’ — The GPIO
pins available for your program, labelled GP0 through to GP28.

▶ GPxx_ADCx — General-purpose input/output pin number ‘xx’, with
analogue input number ‘x’ — A GPIO pin which ends in ADC and a
number can be used as an analogue input as well as a digital input or
output — but not both at the same time.

▶ ADC_VREF — Analogue-to-digital converter (ADC) voltage reference —
A special input pin which sets a reference voltage for any analogue in-
puts.

▶ AGND — Analogue-to-digital converter (ADC) 0 volts ground — A spe-
cial ground connection for use with the ADC_VREF pin.

▶ RUN — Enables or disables your Pico — The RUN header is used to start
and stop your Pico from another microcontroller or other controlling
device.

Connecting Thonny to Pico
Begin by loading Thonny: click the Raspberry Pi menu at the top-left on your
screen, move the mouse to the Programming section, and click on Thonny.

With your Pico connected to your Raspberry Pi, click on the words Local
Python 3 at the bottom-right of the Thonny window. This shows your current
interpreter, which is responsible for taking the instructions you type and
turning them into code that the computer, or microcontroller, can understand
and run. Normally the interpreter is the copy of Python running on your
Raspberry Pi, but it needs to be changed to run your MicroPython programs
on your Pico.

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 229

Look for ‘MicroPython (Raspberry Pi Pico)’ (Figure 9-13) in the list that ap-
pears, and click on it. If you can’t see it in the list, double-check that your Pi-
co is properly plugged into the micro USB cable, and that the micro USB cable
is properly plugged into your Raspberry Pi or other computer.

Figure 9-13 Choosing a Python interpreter

Your first MicroPython program: Hello, World!
You can check that everything’s working the same way you learned to write
Python programs on Raspberry Pi: by writing a simple ‘Hello, World!’ pro-
gram. First, click on the Python shell area at the bottom of the Thonny win-
dow, just to the right of the bottom >>> symbols, and type the following
instruction before pressing the ENTER key:

PYTHON PROFESSIONALS

This chapter assumes you’re familiar with the Thonny IDE and writing simple Python

programs. If you haven’t done so already, work through the projects in Chapter 5, Pro-

gramming with Python before continuing with this chapter.

INTERPRETER SWITCHING

Choosing the interpreter picks where and how your program will run: when you

choose MicroPython (Raspberry Pi Pico), programs will run on your Pico; picking

Local Python 3 means programs will run on your Raspberry Pi instead.

If you find programs aren’t running where you’d expect, make sure to check which in-

terpreter Thonny is set to use!

?

?

230 · Chapter 9 · Raspberry Pi Pico and Pico W

print("Hello, World!")

When you press ENTER, you’ll see that your program begins to run instantly:
Python will respond, in the same shell area, with the message ‘Hello,
World!’ (Figure 9-14), just as you asked. That’s because the shell is a direct
line to the MicroPython interpreter running on your Pico, whose job it is to
look at your instructions and interpret what they mean. This interactive mode
works the same as when you’re programming your Raspberry Pi: instructions
written in the shell area are acted on immediately, with no delay. The only dif-
ference: they’re sent to your Pico to run them, and any result — in this case
the message ‘Hello, World!’ — is sent back to Raspberry Pi to be displayed.

Figure 9-14 MicroPython prints the ‘Hello, World!’ message in the shell area

You don’t have to program your Pico (or your Raspberry Pi) in interactive
mode. Click on the script area in the middle of the Thonny window, then type
your program again:

print("Hello, World!")

When you press the ENTER key this time, nothing happens — except that you
get a new, blank line in the script area. To make this version of your program
work, you’ll have to click the Run icon in the Thonny toolbar.

Even though this is a simple program, you’ll want to get in the habit of saving
your work. Before you run your program, click the Save icon . You’ll be
asked whether you want to save your program to ‘This computer’, meaning
your Raspberry Pi or whatever other computer you’re running Thonny on, or
to ‘Raspberry Pi Pico’ (Figure 9-15). Click Raspberry Pi Pico, then type a de-
scriptive name like Hello World.py and click the OK button.

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 231

Figure 9-15 Saving a program to Pico

Click the Run icon now. It will run automatically on your Pico. You’ll see
two messages appear in the shell area at the bottom of the Thonny window:

>>> %Run -c $EDITOR_CONTENT

Hello, World!

The first of these lines is an instruction from Thonny telling the MicroPy-
thon interpreter on your Pico to run the code that’s in the script area (the
EDITOR_CONTENT). The second is the output of the program — the message
you told MicroPython to print. Congratulations: now you’ve written two Mi-
croPython programs, in interactive and script modes, and you’ve successfully
run them on your Pico!

There’s just one more piece to the puzzle: loading your program again. Close
Thonny by pressing the X at the top-right of the window on Windows or Lin-
ux (use the close button at the top-left of the window on macOS), then launch
Thonny again. This time, instead of writing a new program, click the Load
icon in the Thonny toolbar. You’ll be asked whether you want to save it to
‘This computer’ or your ‘Raspberry Pi Pico’ again. Click Raspberry Pi Pico
and you’ll see a list of all the programs you’ve saved to your Pico.

A PICO FULL OF PROGRAMS

When you tell Thonny to save your program on the Pico, it means that the programs

are stored on the Pico itself. If you unplug your Pico and plug it into a different com-

puter, your programs will still be where you saved them: on your very own Pico.

?

232 · Chapter 9 · Raspberry Pi Pico and Pico W

Find Hello_World.py in the list — if your Pico is new, it will be the only file
there. Click to select it, then click OK. Your program will load into Thonny,
ready to be edited, or for you to run it again.

Your first physical computing program: Hello,
LED!
Just as printing ‘Hello, World’ to the screen is the usual first step in learning
a programming language, making an LED light up is the traditional introduc-
tion to learning physical computing on a new platform. You can get started
without any additional components, too: your Raspberry Pi Pico has a small
LED, known as a surface-mount device (SMD) LED, on top.

Start by finding the LED: it’s the small rectangular component to the left of
the micro USB port at the top of the board (Figure 9-16), marked ‘LED’.

Figure 9-16
The on-board LED is found to the left of the micro
USB connector

The on-board LED is connected to one of RP2040’s general-purpose input/
output pins, GP25. This is one of the ‘missing’ GPIO pins provided by the
RP2040 microcontroller, but not broken out to a physical pin on the edge of
your Pico. While you can’t connect any hardware to the pin (other than the
on-board LED), it can be treated just the same as any other GPIO pin within

CHALLENGE: NEW MESSAGE

Can you change the message the Python program prints as its output? If you wanted

to add more messages, would you use interactive mode or script mode? What hap-

pens if you remove the brackets or the quotation marks from the program and then try

to run it again?

?

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 233

your programs. It’s a simple way to add an output to your programs without
needing any extra components.

Click the New icon in Thonny and start your program with the following
line:

import machine

This short line of code is key to working with MicroPython on your Pico. It
loads, or imports, a collection of MicroPython code known as a library — in
this case, the machine library. The machine library contains all the instruc-
tions MicroPython needs to communicate with the Pico and other MicroPy-
thon-compatible devices, extending the language for physical computing.
Without this line, you won’t be able to control any of your Pico’s GPIO pins —
and you won’t be able to make the on-board LED light up.

The machine library exposes what is known as an application programming
interface (API). The name sounds complicated, but describes exactly what it
does: it provides a way for your program, or the application, to communicate
with the Pico via an interface.

The next line of your program provides an example of the machine library’s
API:

led_onboard = machine.Pin("LED", machine.Pin.OUT)

This line defines an object called led_onboard, which offers a friendly name
you can use to refer to the on-board LED later in your program. It’s technically
possible to use any name here, but it’s best to stick with names which describe
the variable’s purpose, to make the program easier to read and understand.

The second part of the line calls the Pin function in the machine library. This
function, as its name suggests, is designed for handling your Pico’s GPIO pins.
At the moment, none of the GPIO pins — including GP25, the pin connected
to the on-board LED — know what they’re supposed to be doing. The first ar-
gument, LED, is a special macro which is assigned to the on-board LED, which
you can use instead of having to remember number of its pin. The second,
machine.Pin.OUT, tells Pico the pin should be used as an output rather than
an input.

That line alone is enough to set the pin up, but it won’t light the LED. To do
that, you need to tell your Pico to actually turn the pin on. Type the following
code on the next line:

led_onboard.value(1)

234 · Chapter 9 · Raspberry Pi Pico and Pico W

This line is also using the machine library’s API. Your earlier line created the
object led_onboard as an output on pin GP25, using the LED macro; this line
takes the object and sets its value to 1 for ‘on’. It could also set the value to 0,
for ‘off’.

Click the Run button and save the program on your Pico as Blink.py. You’ll
see the LED light up. Congratulations: you’ve written your first physical com-
puting program!

You’ll notice, however, that the LED stays lit. That’s because your program
tells the Pico to turn it on, but never tells it to turn it off. You can add another
line at the bottom of your program:

led_onboard.value(0)

Run the program this time, though, and the LED never seems to light up.
That’s because your Pico works very, very quickly — much faster than you
can see with the naked eye. The LED is lighting up, but for such a short time
that it appears to remain dark. To fix that, you need to slow your program
down by introducing a delay.

Go back to the top of your program: click to move your cursor to the end of
the first line and press ENTER to insert a new second line. On this line, type:

import utime

Like import machine, this line imports a new library into MicroPython: the
utime library. This library handles everything to do with time, from measur-
ing it to inserting delays into your programs.

Click on the end of the line led_onboard.value(1), then press ENTER to in-
sert a new line. Type:

utime.sleep(5)

This calls the sleep function from the utime library, which makes your pro-
gram pause for the number of seconds you typed: in this case, five seconds.

PIN NUMBERS

The GPIO pins on your Pico are usually referred to using their full names: GP25 for the

pin connected to the on-board LED, for example. In MicroPython, though, the letters G

and P are dropped — so, if you’re using the pin number rather than the LED macro,

make sure you write ‘25’ rather than ‘GP25’ in your program or it won’t work!

?

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 235

Click the Run button again. This time you’ll see the on-board LED on your Pi-
co light up, stay lit for five seconds — try counting along — and go out again.

Finally, it’s time to make the LED blink. To do that, you’ll need to create a loop.
Rewrite your program so it matches the one below:

import machine

import utime

led_onboard = machine.Pin(LED, machine.Pin.OUT)

while True:

led_onboard.value(1)

utime.sleep(5)

led_onboard.value(0)

utime.sleep(5)

Remember that the lines inside the loop need to be indented by four spaces,
so MicroPython knows they form the loop. Click the Run icon again, and
you’ll see the LED switch on for five seconds, switch off for five seconds, and
switch on again, constantly repeating in an infinite loop. The LED will contin-
ue to flash until you click the Stop icon to cancel your program and reset
your Pico.

There’s another way to handle the same job, too: using a toggle, rather than
setting the LED’s output to 0 or 1 explicitly. Delete the last four lines of your
program and replace them so it looks like this:

import machine

import utime

led_onboard = machine.Pin(LED, machine.Pin.OUT)

while True:

led_onboard.toggle()

utime.sleep(5)

UTIME VS TIME

If you’ve programmed in Python before, you’ll be used to using the time library. The

utime library is a version designed for microcontrollers like the Pico — the ‘u’ stand-

ing for ‘μ’, the Greek letter ‘mu’, which is used as a shorthand for ‘micro’. If you forget

and use import time, don’t worry: MicroPython will automatically use the utime li-

brary instead.

?

236 · Chapter 9 · Raspberry Pi Pico and Pico W

Run your program again. You’ll see the same activity as before: the on-board
LED will light up for five seconds, then go out for five seconds, then light up
again in an infinite loop. This time, though, your program is two lines short-
er: you’ve optimised it. Available on all digital output pins, toggle() simply
switches between on and off: if the pin is currently on, toggle() switches it
off; if it’s off, toggle() switches it on.

Congratulations: you’ve learned what a microcontroller is, how to connect
Raspberry Pi Pico to your Raspberry Pi, how to write MicroPython programs,
and how to toggle an LED by controlling a pin on the Pico!

There’s much more to learn about your Raspberry Pi Pico: using it with a
breadboard, connecting additional hardware like LEDs, buttons, motion sen-
sors or screens, and even making use of advanced features like its analogue to
digital converters (ADCs) and programmable input/output (PIO) capabilities.
And that’s without considering connecting it to your network to begin exper-
imenting with the Internet of Things (IoT).

To learn more, pick up a copy of Get Started with MicroPython on Raspberry
Pi Pico. It’s available at all good booksellers, online and in print.

CHALLENGE: LONGER LIGHT-UP

How would you change your program to make the LED stay on for longer? What about

staying off for longer? What’s the smallest delay you can use while still being able to

see the LED blink on and off?

?

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 237

Appendix A

Install an operating system to
a microSD card

You can buy microSD cards with Raspberry Pi OS pre-installed on them from
all good Raspberry Pi retailers, so you can get started with Raspberry Pi
quickly and easily. Pre-loaded microSD cards are also bundled with the Rasp-
berry Pi Desktop Kit and Raspberry Pi 400.

If you’d prefer to install the operating system yourself on a blank microSD
card, you can do this easily using Raspberry Pi Imager. If you’re using Rasp-
berry Pi 4, Raspberry Pi 400, or Raspberry Pi 5, you can also download and
install the operating system over the network directly on your device.

Downloading Raspberry Pi Imager
Based on Debian, Raspberry Pi OS is the official operating system for Rasp-
berry Pi. The easiest way to install Raspberry Pi OS on a microSD card for
your Raspberry Pi is to use the Raspberry Pi Imager tool, downloadable from
rptl.io/imager.

WARNING!

If you’ve purchased a microSD card with Raspberry Pi OS already pre-installed, you

don’t need to do anything else other than plug it into your Raspberry Pi. These instruc-

tions are for installing Raspberry Pi OS on blank microSD cards, or on cards you’ve

used before and want to repurpose. Carrying out these instructions on a microSD card

with files on it will delete those files, so make sure you’ve backed things up first!

!

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 239

http://rptl.io/imager

The Raspberry Pi Imager application is available for Windows, macOS, and
Ubuntu Linux computers, so choose the relevant version for your system. If
the only computer you have access to is your Raspberry Pi, skip to “Running
Raspberry Pi Imager over the network” to see if it’s possible to run the tool
directly on your Raspberry Pi. If not, you’ll need to purchase a microSD card
with the operating system already installed from a Raspberry Pi reseller — or
ask a friend if they can install it onto your microSD card for you.

On macOS, double-click the downloaded DMG file. You may need to change
your Privacy & Security setting to allow apps downloaded from the App Store
and identified developers to enable it to run. You can then drag the Raspber-
ry Pi Imager icon into the Applications folder.

On a Windows PC, double-click the downloaded EXE file. When prompted,
select the Yes button to enable it to run. Then click the Install button to start
the installation.

On Ubuntu Linux, double-click the downloaded DEB file to open the Software
Centre with the package selected, then follow the on-screen instructions to
install Raspberry Pi Imager.

You can now attach your microSD card to your computer. You’ll need a USB
adapter unless your computer has a card reader built in — many laptops do,
but not many desktops. Note that the microSD card doesn’t need to be pre-
formatted.

Launch the Raspberry Pi Imager application, then skip to “Writing the OS to
the microSD card” on page 241.

Running Raspberry Pi Imager over the network
Raspberry Pi 4 and Raspberry Pi 400 all include the ability to run Raspberry
Pi Imager themselves, loading it over the network without the need to use a
separate desktop or laptop computer.

To run Raspberry Pi Imager directly, you’ll need your Raspberry Pi, a blank
microSD card, a keyboard (if you’re not using the Raspberry Pi 400’s built-in
keyboard), a TV or monitor, and an Ethernet cable connected to your modem
or router. Note that installation over a Wi-Fi connection isn’t supported.

WARNING!

At the time of this writing, network installation is not supported on Raspberry Pi 5, but

it will be available in a future firmware update.

!

240 · Appendix A · Install an operating system to a microSD card

Insert your blank microSD card into your Raspberry Pi’s microSD slot, and
connect the keyboard, Ethernet cable, and USB power supply. If you’re
reusing an old microSD card, hold down the Shift key on the keyboard as
Raspberry Pi boots up to load the network installer; if your microSD is blank,
the installer will load automatically.

When you see the network installer screen, hold down the Shift key to begin
the installation process. The installer will automatically download a special
version of Raspberry Pi Imager and load it on your Raspberry Pi as shown in
Figure A-1. Once it’s downloaded, you’ll see a screen exactly like the stand-
alone version of Raspberry Pi Imager, complete with options to choose an op-
erating system and a storage device for installation.

Figure A-1 Installing Raspberry Pi OS over the network

Writing the OS to the microSD card
Click the Choose Device button to select which model of Raspberry Pi you
have, and you’ll see the screen shown in Figure A-2. Find your Raspberry Pi in
the list and click it. Next, Click Choose OS to select which operating system
you would like to install, and the screen shown in Figure A-3 will appear.

The top option is standard Raspberry Pi OS with desktop — if you’d prefer the
slimmed-down Lite version, or the Full version (‘Raspberry Pi OS with desk-
top and recommended software’), select ‘Raspberry Pi OS (other)’.

You can also scroll down the list to see a range of third-party operating sys-
tems compatible with Raspberry Pi. Depending on your model of Raspber-

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 241

ry Pi, these may range from general-purpose operating systems like Ubuntu
Linux and RISC OS Pi to operating systems tailored for home entertainment,
gaming, emulation, 3D printing, digital signage, and more.

Near the very bottom of the list, you’ll find Erase; this will wipe the microSD
card and all the data on it.

Figure A-2 Choosing your model of Raspberry Pi

Figure A-3 Choosing an operating system

If there’s an operating system you want to try which isn’t in the list, you can
still install it using Raspberry Pi Imager. Just head to the operating system’s

32-BIT VERSUS 64-BIT

After you select a model of Raspberry Pi, you will only be offered images that are

compatible with your model. If Raspberry Pi OS (64-bit) is among the options, as

would be the case with Raspberry Pi 4 or Raspberry Pi 5, choose the 64-bit option un-

less you have a compelling need to install a 32-bit version of the operating system.

?

242 · Appendix A · Install an operating system to a microSD card

website, download the image, then pick the Use custom option from the bot-
tom of the Choose OS list.

With an OS selected, click the Choose Storage button and select your mi-
croSD card. Usually, it’ll be the only storage device in the list. If you see more
than one storage device — this usually happens if you have another microSD
card or a USB flash drive attached to your computer — then be very careful to
pick the right device, or you could wipe your drive and lose all your data. If in
doubt, just close Raspberry Pi Imager, disconnect all removable drives except
your target microSD card, and open Raspberry Pi Imager again.

Finally, click the Next button and you’ll be asked whether you want to cus-
tomise the operating system. If you are running the Lite version, you will need
to go through this step because it allows you to configure your username,
password, wireless network connection, and more without needing to con-
nect a keyboard, mouse, and monitor.

Next, Raspberry Pi Imager will ask you to confirm whether you should write
over the contents of your SD card, and if you click Yes, it will begin. Wait
while the utility writes the selected OS to your card and then verifies it. When
the operating system has been written to the card, you can remove the mi-
croSD card from your desktop or laptop computer and insert it into your
Raspberry Pi to boot into your new operating system. If you wrote the new
OS on your Raspberry Pi itself using the network boot feature, simply turn
Raspberry Pi off and back on again to load your new OS.

Always make sure the write process has finished before removing the mi-
croSD card or switching your Raspberry Pi off. If the process is interrupted
part-way through, your new OS won’t work properly. If that happens, simply
start the write process again to overwrite the damaged OS and replace it with
a working copy.

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 243

Appendix B

Installing and uninstalling
software

Raspberry Pi OS comes with a selection of popular software packages, hand-
picked by the team at Raspberry Pi, but these are not the only packages that
will work on a Raspberry Pi. Using the following instructions, you can browse
additional software, install it, and uninstall it again — expanding the capabil-
ities of your Raspberry Pi.

The instructions in this appendix are supplementary to those in Chapter 3,
Using your Raspberry Pi, which explains how to use the Recommended Soft-
ware tool.

Browsing available software
To see and search the list of software packages available for Raspberry Pi OS
using its software repositories, click the Raspberry Pi icon to load the menu,
select the Preferences category, then click on Add/Remove Software. After a
few seconds, the tool’s window will appear as shown in Figure B-1.

The left-hand side of the Add/Remove Software window contains a list of cat-
egories. They’re the same categories that you will see in the main menu when
you click on the Raspberry Pi icon.

Clicking on one category will show you a list of the software available for it.
You can also enter a search term in the box at the top-left of the window, such
as ‘text editor’ or ‘game’, and see a list of matching software packages, which
can come from any category. Clicking on any package brings up additional

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 245

information about it in the space at the bottom of the window as shown in
Figure B-2.

Figure B-1 The Add/Remove Software window

Figure B-2 Additional package information

If the category you’ve chosen has lots of software packages available, it may
take some time for the Add/Remove Software tool to finish working through
the list.

246 · Appendix B · Installing and uninstalling software

Installing software
To select a package for installation, check the box next to it by clicking on
it. You can install more than one package at once: keep clicking to add more
packages. The icon next to the package will change to an open box with a ‘+’
symbol, as shown in Figure B-3, to confirm that it’s going to be installed.

Figure B-3 Selecting a package for installation

When you’re happy with your choices, click either the OK or Apply button.
the only difference is that OK will close the Add/Remove Software tool when
your software is installed, while the Apply button leaves it open. You’ll be
asked to enter your password (Figure B-4), to confirm your identity — you
wouldn’t want anyone else to be able to add or remove software from your
Raspberry Pi, after all!

Figure B-4 Authenticating your identity

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 247

You may find that when you install a single package, other packages are in-
stalled alongside it. These are dependencies: packages that the software you
chose to install needs in order to work, like sound effect bundles for a game,
or a database to go with a web server.

Once the software is installed, you should be able to find it by clicking the
Raspberry Pi icon to load the menu and then choosing the software pack-
age’s category (see Figure B-5). Keep in mind that the menu category isn’t
always the same as the category in the Add/Remove Software tool, and
some software doesn’t have an entry in the menu at all. This software is
known as command-line software, and needs to be run at the terminal. For
more information on the command line and the terminal, turn to Appendix
C, The command-line interface.

Figure B-5 Finding the software you just installed

Uninstalling software
To select a package for removal, or uninstallation, find it in the list of pack-
ages — the search function is handy here — and uncheck the box next to it
by clicking on it. You can uninstall more than one package at once: just keep
clicking to remove more packages. The icon next to the package will change
to an open box next to a small recycle bin, to confirm that it’s going to be
uninstalled (see Figure B-6).

As before, you can click OK or Apply to begin uninstalling the selected soft-
ware packages. You’ll be asked to confirm your password, unless you did so
within the last few minutes, and you may also be prompted to confirm that
you want to remove any dependencies relating to your software package as
well (see Figure B-7). When the uninstallation has finished, the software will
disappear from the Raspberry Pi menu, but files you created using the soft-
ware — pictures for a graphics package, for example, or saves for a game —
won’t be removed.

248 · Appendix B · Installing and uninstalling software

Figure B-6 Selecting a package for removal

Figure B-7 Confirming whether to remove dependencies

WARNING!

All software installed in Raspberry Pi OS appears in Add/Remove Software, including

software required for your Raspberry Pi to run. It’s possible to remove packages that

the desktop needs to load. To avoid this, don’t uninstall things unless you’re sure you

no longer need them. You can reinstall Raspberry Pi OS by following the instructions

in Appendix A, Install an operating system to a microSD card.

!

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 249

Appendix C

The command-line interface

While you can manage most of the software on a Raspberry Pi through the
desktop, some can only be accessed using a text-based mode known as the
command-line interface (CLI) in an application called Terminal. Most users
will never need to use the CLI, but for those who want to learn more, this ap-
pendix offers a basic introduction.

Loading the Terminal
The CLI is accessed through the Terminal, a software package which loads
what is technically known as a virtual teletype (VTY) terminal, a name dating
back to the early days of computers when users issued commands via a large
electromechanical typewriter rather than a keyboard and monitor. To load
the Terminal package, click on the Raspberry Icon to load the menu, choose
the Accessories category, then click on Terminal. The Terminal window will
appear as shown in Figure C-1.

The Terminal window can be dragged around the desktop, resized, max-
imised, and minimised just like any other window. You can also make the
writing in it bigger if it’s hard to see, or smaller if you want to fit more in the
window: click the Edit menu and choose Zoom In or Zoom Out, or press and
hold the CTRL key on the keyboard followed by + or -.

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 251

Figure C-1 The Terminal window

The prompt
The first thing you see in a terminal is the prompt, which is waiting for your
instructions. The prompt on a Raspberry Pi running Raspberry Pi OS looks
like this:

username@raspberrypi:~ $

The first part of the prompt, username, will be your username. The second
part, after the @, is the host name of the computer you’re using, which is
raspberrypi by default. After the ‘:’ is a tilde, ~, which is a shorthand way of
referring to your home directory and represents your current working direc-
tory (CWD). Finally, the $ symbol indicates that your user is an unprivileged
user, meaning that you will need to elevate your permissions before carrying
out certain tasks like adding or removing software.

Getting around
Try typing the following then pressing the ENTER key:

cd Desktop

You’ll see the prompt change to:

pi@raspberrypi:~/Desktop $

252 · Appendix C · The command-line interface

That shows you that your current working directory has changed: you were in
your home directory before, indicated by the ~ symbol, and now you’re in the
Desktop subdirectory underneath your home directory. To do that, you used
the cd command — change directory.

There are four ways to go back to your home directory: try each in turn,
changing back into the Desktop subdirectory each time. The first is:

cd ..

The .. symbols are another shortcut, this time for ‘the directory above this
one’, also known as the parent directory. Because the directory above Desk-
top is your home directory, this returns you there. Change back into the
Desktop subdirectory, and try the second method:

cd ~

This uses the ~ symbol, and literally means ‘change into my home directory’.
Unlike cd .., which just takes you to the parent directory of whatever direc-
tory you’re currently in, this command works from anywhere — but there’s an
easier way:

cd

Without being given the name of a directory, cd simply defaults to going back
to your home directory.

There’s another way to get back to your home directory (replace username

with your actual username):

cd /home/username

This uses what is called an absolute path, which will work regardless of the
current working directory. So, like cd on its own or cd ~, this will return you
to your home directory from wherever you are. Unlike the other methods,
though, it needs you to know your username.

CORRECT CASE

Raspberry Pi OS’s command-line interface is case-sensitive, meaning that it matters

when commands or names have upper- and lower-case letters. If you received a ‘no

such file or directory’ message when you tried to change directories, check that you

had a capital D at the start of Desktop.

?

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 253

Handling files
To practise working with files, change (cd) to the Desktop directory and type
the following:

touch Test

You’ll see a file called Test appear on the desktop. The touch command is nor-
mally used to update the date and time information on a file, but if, as in this
case, the file doesn’t exist, it creates it.

Try the following:

cp Test Test2

You’ll see another file, Test2, appear on the desktop. This is a copy of the orig-
inal file, identical in every way. Delete it by typing:

rm Test2

This removes the file, and you’ll see it disappear.

Next, try:

mv Test Test2

This command moves the file, and you’ll see your original Test file disappear
and be replaced by Test2. The move command, mv, can be used like this to re-
name files.

When you’re not on the desktop, though, you still need to be able to see what
files are in a directory. Type:

ls

WARNING!

When you delete files using the graphical File Manager, it stores them in the Waste-

basket for later retrieval just in case you change your mind. Files deleted using rm are

gone for good, and won’t go via the Wastebasket. Make sure you type with care!

!

254 · Appendix C · The command-line interface

This command lists the contents of the current directory, or any other direc-
tory you give it. For more details, including listing any hidden files and re-
porting the sizes of files, try adding some switches:

ls -larth

These switches control the ls command: l switches its output into a long ver-
tical list; a tells it to show all files and directories, including ones that would
normally be hidden. The r switch reverses the normal sort order; t sorts by
modification time, which combined with r gives you the oldest files at the top
of the list and the newest files at the bottom. And h uses human-readable file
sizes, making the list easier to understand.

Running programs
Some programs can only be run at the command line, while others have both
graphical and command-line interfaces. An example of the latter is the Rasp-
berry Pi Software Configuration Tool, which you would normally load from
the raspberry icon menu.

To experiment with using the Software Configuration Tool at the command
line, type:

raspi-config

You’ll be shown an error message telling you that the software can only be
run as root, the superuser account on your Raspberry Pi, because of your user
account’s status as an unprivileged user. It will also tell you how to run the
software as the root, by typing:

sudo raspi-config

The sudo part of the command means switch-user do, and tells Raspberry Pi
OS to run the command as the root user. The Raspberry Pi Software Configu-
ration tool will appear as shown in Figure C-2.

You’ll only need to use sudo when a program needs elevated privileges, such
as when it’s installing or uninstalling software or adjusting system settings. A
game, for example, should never be run using sudo.

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 255

Figure C-2 The Raspberry Pi Software Configuration tool

Press the TAB key twice to select Finish and press ENTER to quit the Rasp-
berry Pi Software Configuration Tool and return to the command-line inter-
face. Finally, type:

exit

This will end your command-line interface session and close the Terminal
app.

Using the TTYs
The Terminal application isn’t the only way to use the command-line inter-
face: you can also switch to one of a number of already-running terminals
known as the teletypes or TTYs. Hold the CTRL and ALT keys on your key-
board and press the F2 key to switch to tty2 (see Figure C-3).

Figure C-3 One of the TTYs

You’ll need to log in again with your username and password, after which you
can use the command-line interface just like in the Terminal application. Us-
ing these TTYs is handy when, for whatever reason, the main desktop inter-
face isn’t working.

To switch away from the TTY, press and hold CTRL+ALT, then press F7: the
desktop will reappear. Press CTRL+ALT+F2 again and you’ll switch back to
tty2 — and anything you were running in it will still be there.

256 · Appendix C · The command-line interface

Before switching again, type:

exit

Then press CTRL+ALT+F7 to get back to the desktop. The reason for exiting
before switching away from the TTY is that anybody with access to the key-
board can switch to a TTY, and if you’re still logged in they’ll be able to access
your account without having to know your password!

Congratulations: you’ve taken your first steps in mastering the Raspberry Pi
OS command-line interface!

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 257

Appendix D

Further reading

The Official Raspberry Pi Beginner’s Guide is designed to get you started with
your Raspberry Pi, but it’s by no means a complete look at everything you can
do. The Raspberry Pi community is globe-spanning and vast, with people us-
ing them for everything from games and sensing applications to robotics and
artificial intelligence. You’ll find a huge amount of inspiration out there.

Each page in this appendix highlights some sources of project ideas, lesson
plans, and other material which act as a great next step now you’ve worked
your way through the Beginner’s Guide.

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 259

Bookshelf
Raspberry Pi icon > Help > Bookshelf

Figure D-1 The Bookshelf application

Bookshelf (shown in Figure D-1) is an application included with Raspberry Pi
OS which lets you browse, download, and read digital versions of Raspber-
ry Pi Press publications. Load it by clicking on the Raspberry Pi icon, select
Help, and click Bookshelf; then browse from a range of magazines and books,
all free to download and read at your leisure.

260 · Appendix D · Further reading

Raspberry Pi news
raspberrypi.com/news

Figure D-2 Raspberry Pi news

Every weekday, you’ll find a new article, covering announcements on new
Raspberry Pi computers and accessories, the latest software updates, and
round-ups of community projects — as well as updates from Raspberry Pi Press
publications including The MagPi and HackSpace Magazine (Figure D-2).

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 261

http://raspberrypi.com/news

Raspberry Pi Projects
rpf.io/projects

Figure D-3 Raspberry Pi projects

The official Raspberry Pi Projects site from the Raspberry Pi Foundation
(Figure D-3) offers step-by-step project tutorials in a range of categories,
from making games and music to building your own website or Raspberry
Pi-powered robot. Most projects are available in a variety of languages, too,
and cover a range of difficulty levels suitable for everyone from absolute be-
ginners to experienced makers.

262 · Appendix D · Further reading

http://rpf.io/projects

Raspberry Pi Education
rpf.io/education

Figure D-4 The Raspberry Pi education site

The official Raspberry Pi Education site (Figure D-4) offers newsletters, on-
line training, and projects with educators firmly in mind. The site also links
to additional resources including free training programmes, Code Club and
CoderDojo volunteer-driven coding programmes, and more.

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 263

http://rpf.io/education

The Raspberry Pi Forums
rptl.io/forums

Figure D-5 The Raspberry Pi forums

The Raspberry Pi Forums, shown in Figure D-5, are where Raspberry Pi fans
can get together and chat about everything from beginner’s issues to deeply
technical topics — and there’s even an ‘off-topic’ area for general chatting!

264 · Appendix D · Further reading

http://rptl.io/forums

The MagPi magazine
magpi.cc

Figure D-6 The MagPi magazine

The official Raspberry Pi magazine, The MagPi is a monthly publication which
covers everything from tutorials and guides to reviews and news, supported
in no small part by the worldwide Raspberry Pi community (Figure D-6).
Copies are available in all good newsagents and supermarkets, and can also
be downloaded digitally free of charge under the Creative Commons licence.
The MagPi also publishes books and bookazines on a variety of topics, which
are available to buy in printed format or to download for free.

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 265

http://magpi.cc/

HackSpace magazine
hsmag.cc

Figure D-7 HackSpace magazine

HackSpace magazine takes a look at the maker community with hardware
and software reviews, tutorials, and interviews (Figure D-7). If you’re inter-
ested in broadening your horizons beyond Raspberry Pi, HackSpace is a great
place to start — it can be found in print at supermarkets and newsagents and
is available as a digital download.

266 · Appendix D · Further reading

http://hsmag.cc/

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 267

Appendix E

Raspberry Pi Configuration
Tool

The Raspberry Pi Configuration Tool is a powerful package for adjusting set-
tings on your Raspberry Pi, from the interfaces available to programs, to the
way you control your Raspberry Pi over a network. It can seem a little daunt-
ing to newcomers, though, so this appendix will walk you through each of the
settings in turn and explain what they do.

You can load the Raspberry Pi Configuration Tool from the Raspberry Pi
menu, under the Preferences category. It can also be run from the command-
line interface or a terminal using the command raspi-config. The layouts of
the command-line version and the graphical version are different, with op-
tions appearing in different categories, depending on which version you use.
This appendix is based on the graphical version.

WARNING!

Unless you know you need to change a particular setting, it’s best to leave the Rasp-

berry Pi Configuration Tool alone. If you’re adding new hardware to your Raspberry Pi,

such as an audio HAT, the instructions should tell you which setting to change; other-

wise, the default settings should generally be left as they are.

!

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 269

System tab
The System tab (Figure E-1) displays options which control Raspberry Pi OS
system settings.

Figure E-1 The System tab

▶ PPaasssswworordd — Click the CChanghange Pe Paasssswworordd button to set a new pass-
word for your current user account.

▶ HHoosstnametname — The hostname is the name by which a Raspberry Pi iden-
tifies itself on networks. If you have more than one Raspberry Pi on
the same network, they must each have a unique name of their own.
Click the CChanghange He Hoosstnametname button to choose a new one.

▶ BBootoot — Setting this to TTo Do Deskeskttopop (the default) loads the familiar
Raspberry Pi OS desktop; setting it to TTo Co CLILI loads the command-line
interface as described in Appendix C, The command-line interface.

▶ AAututo Lo Loogingin — When enabled (the default), Raspberry Pi OS will load
the desktop without needing you to type in your username and pass-
word.

▶ SSpplalash Ssh Sccrreeenen — When enabled (the default), Raspberry Pi OS’s boot
messages are hidden behind a graphical splash screen.

▶ BrBroowwsserer — Allows you to switch between Google’s Chromium (the de-
fault) and Mozilla’s Firefox as your default web browser.

270 · Appendix E · Raspberry Pi Configuration Tool

Display tab
The Display tab (Figure E-2) shows settings which control how the screen is
displayed.

Figure E-2 The Display tab

▶ SSccrreeen Blanen Blankingking — This option allows you turn screen blanking on
and off. When enabled, your Raspberry Pi will turn the display black if
you haven’t used it for a few minutes; this protects your TV or monitor
from any damage which might be caused by displaying a static image
for long periods of time.

▶ HHeeaadlesdless Rs Resesoolutionlution — This option controls the resolution of the vir-
tual desktop when you’re using Raspberry Pi without a monitor or TV
attached — something known as headless operation.

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 271

Interfaces tab
The Interfaces tab (Figure E-3) displays the settings which control the hard-
ware interfaces on your Raspberry Pi.

Figure E-3 The Interfaces tab

▶ SSSHSH — Enables or disables the Secure Shell (SSH) interface. It allows
you to open a command-line interface on Raspberry Pi from another
computer on your network using an SSH client.

▶ VNVNCC — Enables or disables the Virtual Network Computing (VNC) in-
terface. It allows you to view the desktop of your Raspberry Pi from
another computer on your network using a VNC client.

▶ SPSPII — Enables or disables the Serial Peripheral Interface (SPI), used to
control certain components that connect to Raspberry Pi’s GPIO pins.

▶ I2CI2C — Enables or disables the Inter-Integrated Circuit (I²C) interface,
used to control certain components that connect to the GPIO pins.

▶ SSerial Perial Porortt — Enables or disables Raspberry Pi’s serial port, available
on the GPIO pins.

▶ SSerial Cerial Consonsoolele — Enables or disables the serial console, a command-
line interface available on the serial port. This option is only available
if the Serial Port setting above is enabled.

▶ 1-1-WWiriree — Enables or disables the 1-Wire interface, used to control
some hardware add-ons which connect to Raspberry Pi’s GPIO pins.

▶ RRemotemote GPe GPIOIO — Enables or disables a network service which allows
you to control Raspberry Pi’s GPIO pins from another computer on
your network using the GPIO Zero library. More information on re-
mote GPIO is available from gpiozero.readthedocs.io.

272 · Appendix E · Raspberry Pi Configuration Tool

http://gpiozero.readthedocs.io/

Performance tab
The Performance tab (Figure E-4) shows settings which control the perfor-
mance of your Raspberry Pi.

Figure E-4 The Performance tab

▶ OOvvererlalay Fy File Sile Syyssttemem — Allows you to lock Raspberry Pi’s file system
down so that changes only get made to a virtual disk held in memory
rather than being written to the microSD card, so your changes are
lost and you go back to a clean state whenever you reboot.

Models of Raspberry Pi prior to Raspberry Pi 5 will also have the following
options available:

▶ CCaasse Fe Fanan — Allows you to enable or disable an optional cooling fan
connected to Raspberry Pi’s GPIO header, designed to keep the
processor cool in warmer environments or under extreme load. A
compatible fan for the Official Raspberry Pi 4 Case is available from
rptl.io/casefan.

▶ FFan GPan GPIOIO — The cooling fan is normally connected to GPIO Pin 14. If
you have something else connected to this pin, you can choose anoth-
er GPIO pin here.

▶ FFan Tan Temperemperaattururee — The minimum temperature, in degrees Celsius, at
which the fan should spin. Until Raspberry Pi’s processor reaches this
temperature, the fan will remain off to keep things quiet.

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 273

http://rptl.io/casefan

Localisation tab
The Localisation tab (Figure E-5) holds settings which control which region
your Raspberry Pi is designed to operate in, including keyboard layout set-
tings.

Figure E-5 The Localisation tab

▶ LLococaleale — Allows you to choose your locale, a system setting which in-
cludes language, country, and character set. Please note that chang-
ing the language here will only change the displayed language in
applications for which a translation is available, and won’t affect any
documents you’ve created or downloaded.

▶ TTimeimezonezone — Allows you to choose your regional time zone, selecting
an area of the world followed by the closest city. If your Raspberry Pi
is connected to the network but the clock is showing the wrong time,
it’s usually caused by choosing the wrong time zone.

▶ KKeeyyboboarardd — Allows you to choose your keyboard type, language, and
layout. If you find your keyboard outputs the wrong letters or sym-
bols, you can correct it here.

▶ WWirireelesless Ls LAN CAN Countrountryy — Allows you to set your country for radio reg-
ulation purposes. Be sure to select the country in which your Rasp-
berry Pi is being used: selecting a different country may make it
impossible to connect to nearby wireless LAN access points and can
be a breach of broadcasting law. A country must be set before the
wireless LAN radio can be used.

274 · Appendix E · Raspberry Pi Configuration Tool

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 275

Appendix F

Raspberry Pi specifications

The components and features of a computer are its specifications, and a look at
the specifications gives you the information you need to compare two computers.
These specifications can seem confusing. You don’t need to know or understand
them to use a Raspberry Pi, but they are included here for the curious reader.

Raspberry Pi 5
Raspberry Pi 5’s system-on-chip (SoC) is a Broadcom BCM2712, which you’ll
see written on its metal lid if you look closely enough. This features four
64-bit Arm Cortex-A76 central processing unit (CPU) cores, each running at
2.4GHz, and a Broadcom VideoCore VII graphics processing unit (GPU) for
video tasks and for 3D rendering work such as games, running at 800MHz.

The SoC is connected to 4GB or 8GB of LPDDR4X (Low-Power Double-Data-
Rate 4) RAM (random-access memory) which runs at 4,267MHz. This memory
is shared between the central processor and the graphics processor. The mi-
croSD card slot supports up to 512GB of storage.

The Ethernet port supports up to gigabit (1000Mbps, 1000-Base-T) connec-
tions, while the radio supports 802.11ac Wi-Fi networks running on the
2.4GHz and 5GHz frequency bands, Bluetooth 5.0, and Bluetooth Low Energy
(BLE) connections.

Raspberry Pi 5 has two USB 2.0 and two USB 3.0 ports for peripherals. It also
has a connector for a single high-speed PCI Express (PCIe) 3.0 lane. Using an
optional HAT accessory, this connector can be used to add high-speed M.2
Solid State Drive (SSD) storage, accelerators for machine learning (ML) and
computer vision (CV), and other hardware.

The Official Raspberry Pi Beginner’s Guide, 5th Edition · 277

Raspberry Pi 4 and 400

▶ CPU — 64-bit quad-core Arm Cortex-A72 (Broadcom BCM2711) at
1.5GHz or 1.8GHz (Raspberry Pi 400)

▶ GPU — VideoCore VI at 500MHz

▶ RAM — 1GB, 2GB, 4GB (Raspberry Pi 400), or 8GB of LPDDR4

▶ Networking — 1 × Gigabit Ethernet, dual-band 802.11ac, Bluetooth
5.0, BLE

▶ Audio/Video Outputs — 1 × 3.5mm analogue AV jack (Raspberry Pi 4
only), 2 × micro-HDMI 2.0

▶ Peripheral Connectivity — 2 × USB 2.0 ports, 2 × USB 3.0 ports, 1 × CSI
(Raspberry Pi 4 only), 1 × DSI (Raspberry Pi 4 only)

▶ Storage — 1 × microSD up to 512GB (16GB in Raspberry Pi 400 kit)

▶ Power — 5V at 3A via USB C, PoE (with additional HAT, Raspberry Pi
4 only)

▶ Extras — 40-pin GPIO header

Raspberry Pi Zero 2 W

▶ CPU — 64-bit quad-core Arm Cortex-A53 at 1GHz (Broadcom
BCM2710)

▶ GPU — VideoCore IV at 400MHz

▶ RAM — 512MB of LPDDR2

▶ Networking — Single-band 802.11b/g/n, Bluetooth 4.2, BLE

▶ Audio/Video Outputs — 1 × Mini-HDMI

▶ Peripheral Connectivity — 1 × Micro USB OTG 2.0 Port, 1 × CSI

▶ Storage — 1 × microSD up to 512GB

▶ Power — 5 volts at 2.5 amps via micro USB

▶ Extras — 40-pin GPIO header (unpopulated)

278 · Appendix F · Raspberry Pi specifications

The O
ffi

cial Raspberry Pi Beginner’s G
uide

G
areth H

alfacree
5

th Edition

Raspberry Pi is a small, clever, British-built computer that's packed with
potential. Made using a desktop-class, energy-efficient processor, Raspberry Pi
is designed to help you learn coding, discover how computers work, and build
your own amazing things. This book was written to show you just how easy it
is to get started.

Learn how to:

 ▶ Set up your Raspberry Pi, install its operating system, and start using this
fully functional computer.

 ▶ Start coding projects, with step-by-step guides using the Scratch 3, Python,
and MicroPython programming languages.

 ▶ Experiment with connecting electronic components, and have fun creating
amazing projects.

New in the 5th edition:

 ▶ Updated for the latest Raspberry Pi computers: Raspberry Pi 5 and
Raspberry Pi Zero 2 W.

 ▶ Covers the latest Raspberry Pi OS.

 ▶ Includes a new chapter on the Raspberry Pi Pico!

Computers | Hardware | General

UK £19.99
US $24.99
CA $29.99

raspberrypi.com

	The Official Raspberry Pi Beginner’s Guide, 5th Edition
	Table of Contents
	Appendices

	Welcome to the Official Raspberry Pi Beginner’s Guide
	About the author
	Colophon
	Raspberry Pi Press
	The MagPi
	HackSpace

	Get to know your Raspberry Pi
	RASPBERRY PI 400
	RASPBERRY PI ZERO 2 W
	A guided tour of Raspberry Pi
	Raspberry Pi’s components
	Raspberry Pi’s ports
	Raspberry Pi 400
	Raspberry Pi Zero 2 W

	Getting started with your Raspberry Pi
	RASPBERRY PI 400 SETUP
	Setting up the hardware
	Assembling the Raspberry Pi Case
	SETTING UP THE FAN ASSEMBLY
	HATS AND LIDS

	Assembling the Raspberry Pi Zero Case
	CAMERA MODULE AND THE ZERO CASE

	Connecting the microSD card
	Connecting a keyboard and mouse
	KEYBOARD AND MOUSE

	Connecting a display
	TV CONNECTION

	Connecting a network cable (optional)
	Connecting a power supply
	WARNING!

	Setting up Raspberry Pi 400
	Connecting a mouse
	Connecting a display
	Connecting a network cable (optional)
	Connecting a power supply

	Using your Raspberry Pi
	The Welcome Wizard
	WIRELESS NETWORKING
	WARNING!

	Navigating the desktop
	The Chromium web browser
	CLOSE AND SAVE

	The File Manager
	KEYBOARD SHORTCUTS
	EJECT DEVICES

	The Recommended Software tool
	PRE-INSTALLED APPLICATIONS

	The LibreOffice productivity suite
	NO LIBREOFFICE?
	SAVE YOUR WORK
	GETTING HELP

	Raspberry Pi Configuration tool
	MORE DETAILS
	WARNING!

	Software updates
	Shutting down
	WARNING!

	Programming with Scratch 3
	WARNING!
	Introducing the Scratch 3 interface
	SCRATCH VERSIONS
	INSTALLING SCRATCH

	Your first Scratch program: Hello, World!
	WHAT CAN IT SAY?
	Next steps: sequencing
	CHALLENGE: ADD MORE STEPS

	Looping the loop
	WHAT HAPPENS NOW?

	Variables and conditionals
	COUNTING FROM ZERO
	CHALLENGE: HIGH AND LOW

	Project 1: Astronaut reaction timer
	USER INTERFACE
	CHALLENGE: CUSTOM ARTWORK

	Project 2: Synchronised swimming
	CHALLENGE: CUSTOM ROUTINE

	Project 3: Archery game
	CHALLENGE: CAN YOU IMPROVE IT?

	Programming with Python
	Introducing the Thonny Python IDE
	THONNY MODES

	Your first Python program: Hello, World!
	SYNTAX ERROR
	CHALLENGE: NEW MESSAGE

	Next steps: loops and code indentation
	COUNT FROM ZERO
	CHALLENGE: LOOP THE LOOP

	Conditionals and variables
	USING = AND ==
	CHALLENGE: ADD MORE QUESTIONS

	Project 1: Turtle Snowflakes
	U.S. SPELLINGS
	CHALLENGE: WHAT’S NEXT?

	Project 2: Scary Spot the Difference
	CHALLENGE: ALTER THE LOOK

	Project 3: Text Adventure
	CHALLENGE: EXPAND THE GAME

	Physical computing with Scratch and Python
	Introducing the GPIO header
	GPIO EXTENSIONS
	WARNING!

	Electronic components
	Reading resistor colour codes
	CAN YOU WORK IT OUT?

	Your first physical computing program: Hello, LED!
	RESISTANCE IS VITAL
	CODING KNOWLEDGE

	LED control in Scratch
	WARNING!
	CHALLENGE: CAN YOU ALTER IT?

	LED control in Python
	CHALLENGE: LONGER LIGHT-UP

	Using a breadboard
	WARNING
	Next steps: reading a button
	Reading a button in Scratch
	CHALLENGE: MAKE IT STAY LIT

	Reading a button in Python
	CHALLENGE: ADD A LOOP

	Make some noise: controlling a buzzer
	Controlling a buzzer in Scratch
	CHALLENGE: CHANGE THE BUZZ

	Controlling a buzzer in Python

	Scratch project: Traffic Lights
	CHALLENGE: CAN YOU IMPROVE IT?

	Python project: Quick Reaction Game
	CHALLENGE: IMPROVE THE GAME

	Physical computing with the Sense HAT
	WARNING!
	REAL OR SIMULATED
	Introducing the Sense HAT
	SENSE HAT ON RASPBERRY PI 400

	Installing the Sense HAT
	WARNING!
	PROGRAMMING EXPERIENCE

	Hello, Sense HAT!
	Greetings from Scratch
	CHALLENGE: REPEAT THE MESSAGE

	Greetings from Python
	PYTHON LINE CHANGE
	CHALLENGE: REPEAT THE MESSAGE

	Next steps: Drawing with light
	Pictures in Scratch
	WARNING
	CHALLENGE: NEW DESIGNS

	Pictures in Python
	WARNING
	CHALLENGE: NEW DESIGNS

	Sensing the world around you
	EMULATING THE SENSORS

	Environmental sensing
	Environmental sensing in Scratch
	CHANGING VALUES
	CHALLENGE: SCROLL AND LOOP

	Environmental sensing in Python
	CHANGING VALUES
	CHALLENGE: SCROLL AND LOOP

	Inertial sensing
	Inertial sensing in Scratch
	Inertial sensing in Python
	CHALLENGE: AUTO-ROTATE

	Joystick control
	WARNING!
	Joystick control in Scratch
	FINAL CHALLENGE

	Joystick control in Python
	FINAL CHALLENGE

	Scratch project: Sense HAT Sparkler
	Python project: Sense HAT Tricorder

	Raspberry Pi Camera Modules
	RASPBERRY PI 400
	Camera variants
	Raspberry Pi Camera Module 3
	Raspberry Pi High Quality Camera
	Raspberry Pi Global Shutter Camera
	Raspberry Pi Camera Module 2
	RASPBERRY PI ZERO AND RASPBERRY PI 5

	Installing the camera
	ADJUSTING FOCUS

	Testing the camera
	Capturing video
	MAKE ROOM, MAKE ROOM

	Time-lapse photography
	Advanced camera settings
	libcamera-still and libcamera-vid
	libcamera-still
	DIGGING DEEPER

	Raspberry Pi Pico and Pico W
	A guided tour of Raspberry Pi Pico
	Header pins
	Installing MicroPython
	WARNING
	NOTE
	NOTE
	FURTHER READING

	Your Pico’s pins
	Connecting Thonny to Pico
	PYTHON PROFESSIONALS
	INTERPRETER SWITCHING
	Your first MicroPython program: Hello, World!
	A PICO FULL OF PROGRAMS
	CHALLENGE: NEW MESSAGE

	Your first physical computing program: Hello, LED!
	PIN NUMBERS
	UTIME VS TIME
	CHALLENGE: LONGER LIGHT-UP

	Install an operating system to a microSD card
	WARNING!
	Downloading Raspberry Pi Imager
	Running Raspberry Pi Imager over the network
	WARNING!

	Writing the OS to the microSD card
	32-BIT VERSUS 64-BIT

	Installing and uninstalling software
	Browsing available software
	Installing software
	Uninstalling software
	WARNING!

	The command-line interface
	Loading the Terminal
	The prompt
	Getting around
	CORRECT CASE

	Handling files
	WARNING!

	Running programs
	Using the TTYs

	Further reading
	Bookshelf
	Raspberry Pi news
	Raspberry Pi Projects
	Raspberry Pi Education
	The Raspberry Pi Forums
	The MagPi magazine
	HackSpace magazine

	Raspberry Pi Configuration Tool
	WARNING!
	System tab
	Display tab
	Interfaces tab
	Performance tab
	Localisation tab

	Raspberry Pi specifications
	Raspberry Pi 5
	Raspberry Pi 4 and 400
	Raspberry Pi Zero 2 W

