
Dec. 2023
Issue #73 £6

Jukephone
Upgrade old tech with a

Raspberry Pi Pico

Build and program an AI rover

Retro rotary
Turn an ancient phone

into a personal assistant

Matt Venn
Zero to ASIC: you too can
design a computer chip

9
77

25
15

51
40

06

73

Robotics

hsmag.cc Issue #73December 2023

ARC A D E GAMES R ES IN D IY SYNTH

A cost-effective solution for data-centers,
IT departments or remote machines!

Available at the main Raspberry Pi resellers

PiKVM
Manage your servers or
workstations remotely

Reseller suggestions and inquiries:
wholesale@hipi.io

PiKVM HAT
for DIY and custom projects Pre-Assembled version

Real-time clock with rechargeable super capacitor OLED Display Bootable virtual CD-ROM

& flash drive Serial console Open-source API & integration Open-source software

http://hipi.io

WELCOME

FREE PICO W
WHEN YOU
SUBSCRIBE

PAGE 34
Got a comment,

question, or thought
about HackSpace

magazine?

get in touch at
hsmag.cc/hello

3

Welcome to

EDITORIAL
Editor
Ben Everard

	 ben.everard@raspberrypi.com

Features Editor
Andrew Gregory

	andrew.gregory@raspberrypi.com

Sub-Editors
David Higgs, Nicola King

DESIGN
Critical Media
and Raspberry Pi

	criticalmedia.co.uk

Head of Design
Lee Allen

Designers
Sam Ribbits, Sara Parodi,
Jack Willis

Photography
Brian O’Halloran

CONTRIBUTORS
Marc de Vinck, Jo Hinchliffe,
Thomas Burns, Rob Miles, Nicola
King, Turi Scandurra

PUBLISHING
Publishing Director
Brian Jepson

	 brian.jepson@raspberrypi.com

Advertising
Charlie Milligan

	 charlotte.milligan@raspberrypi.com

DISTRIBUTION
Seymour Distribution Ltd
2 East Poultry Ave,
London EC1A 9PT

	 +44 (0)207 429 4000

SUBSCRIPTIONS
Unit 6, The Enterprise Centre,
Kelvin Lane, Manor Royal,
Crawley, West Sussex, RH10 9PE

To subscribe
	 01293 312189

	hsmag.cc/subscribe

Subscription queries
	�hackspace@subscriptionhelpline.co.uk

This magazine is printed on
paper sourced from sustainable
forests. The printer operates an
environmental management system
which has been assessed as
conforming to ISO 14001.

HackSpace magazine is published
by Raspberry Pi Ltd, Maurice Wilkes
Building, St. John’s Innovation
Park, Cowley Road, Cambridge,
CB4 0DS The publisher, editor, and
contributors accept no responsibility
in respect of any omissions or
errors relating to goods, products or
services referred to or advertised.
Except where otherwise noted,
content in this magazine is licensed
under a Creative Commons
Attribution-NonCommercial-
ShareAlike 3.0 Unported (CC BY-NC-
SA 3.0). ISSN: 2515-5148.

GET IN TOUCH
	�hackspace@
raspberrypi.com

	�hackspacemag

	�hackspacemag

ONLINE
	hsmag.cc

HackSpace magazine
Robots are strange things because, in many ways, they’ve
completely taken over our lives. But, on the other hand, it
seems like they haven’t because as soon as a robot becomes
common, we stop calling it a robot. 3D printers, automatic
vacuum cleaners, even many cars, are all robots. They’re
machines that are controlled directly by a computer. However,
we don’t usually call them robots. This issue, we’re not skirting
around the fact. We’re making robots, and we’re calling them
exactly that.

Raspberry Pi 5 makes a great base for a robot because it’s got
enough processing power to churn through almost any sensor
input you can throw at it. In this issue, we’re going to test this
out by processing image data coming in from two cameras.

If that’s not enough, we’re also going to work on the other
end of the spectrum and build a robot with Pico.

We’ll get you started with the basics, and you can customise
them into whatever role you like. Who knows, your project
might be successful enough that people stop calling it a robot.

BEN EVERARD
Editor ben.everard@raspberrypi.com

http://hsmag.cc/hello
mailto:ben.everard@raspberrypi.org
mailto:andrew.gregory@raspberrypi.org
http://www.criticalmedia.co.uk
mailto:russell@raspberrypi.org
mailto:charlotte.milligan@raspberrypi.org
http://hsmag.cc/subscribe
mailto:hackspace@subscriptionhelpline.co.uk
https://itunes.apple.com/us/app/hackspace-magazine/id1315673274?mt=8
https://itunes.apple.com/us/app/hackspace-magazine/id1315673274?mt=8
mailto:hackspace@raspberrypi.org
mailto:hackspace@raspberrypi.org
https://www.facebook.com/HackSpaceMag/
https://twitter.com/HackSpaceMag
http://hsmag.cc
mailto:ben.everard%40raspberrypi.com?subject=

4

Contents
06 	 Top Projects
	 A robotic bartender. Cheers!

18 	 Objet 3d’art
	 Plastic transistors – it’ll never catch on

20 	 Letters
	 In praise of the curvy, fuzzy CRT monitor

24 	 Raspberry Pi Robotics
	 Put the new computer to use

36 	 How I Made: Jukephone
	 Pick up the phone, listen to music

44 	 Interview: Matt Venn
	 Designing your own chip: how hard can it be?

2306 SPARK LENS

70 Build a home assistant with Neolithic
technology – the humble rotary phone

Tutorial
Rotary phone

Cover Feature

24 36

Raspberry Pi 5

ROBOTICS

06

CONTENTS

5

54 	 SoM Modular Pico
	 Build a modular synth with Raspberry Pi Pico

60 	 Tutorial Robot bartender
	 Pour drinks like it’s the year 3000

66 	 Tutorial Eco resin
	 Make shiny things without all those nasty chemicals

70 	 Tutorial Rotary phone
	 Turn obsolete hardware into a home assistant

78 	 Tutorial KiCad
	 Use the mechanical properties of PCBs

53 FORGE

86 	 Best of Breed
	 Recreate the fun of the video games arcade

92 	 Review Adafruit Metro M7 with AirLift
	 A vulgar display of project-building power

94 	 Review Pimoroni PicoVision
	 Get smooth HD visuals out of your Pico

96 	 Crowdfunding Open UpCell
	 Make battery-powered projects a whole lot easier

85 FIELD TEST

Crowdfunding

96 Battery power without
the hazards of lithium

44 Home-designed computer chips: the
next frontier in open-source hardware

Interview

Some of the tools and techniques shown in HackSpace Magazine are dangerous unless used with skill, experience and appropriate personal protection equipment. While we attempt to guide the reader, ultimately you
are responsible for your own safety and understanding the limits of yourself and your equipment. HackSpace Magazine is intended for an adult audience and some projects may be dangerous for children. Raspberry
Pi Ltd does not accept responsibility for any injuries, damage to equipment, or costs incurred from projects, tutorials or suggestions in HackSpace Magazine. Laws and regulations covering many of the topics in
HackSpace Magazine are different between countries, and are always subject to change. You are responsible for understanding the requirements in your jurisdiction and ensuring that you comply with them. Some
manufacturers place limits on the use of their hardware which some projects or suggestions in HackSpace Magazine may go beyond. It is your responsibility to understand the manufacturer’s limits. HackSpace mag-
azine is published monthly by Raspberry Pi Ltd, Maurice Wilkes Building, St. John’s Innovation Park, Cowley Road, Cambridge, CB4 0DS, United Kingdom. Publishers Service Associates, 2406 Reach Road, Williamsport,
PA, 17701, is the mailing agent for copies distributed in the US and Canada. Application to mail at Periodicals prices is pending at Williamsport, PA. Postmaster please send address changes to HackSpace magazine
c/o Publishers Service Associates, 2406 Reach Road, Williamsport, PA, 17701.

Matt Venn

Open UpCell

78

86

Top Projects

REGULAR

6

Arduino
cocktail machine

hristmas is coming, which is a good excuse to
gather socially and drink fermented vegetable
products. And what better way than via this Arduino-
powered cocktail dispenser, which features a rotary
encoder for navigating the cocktail menu, a TFT
screen, laser-cut plywood and plastic body, and an

Archimedes screw to give your beverage just the right amount of
ice. It’s brilliant: so brilliant that we’ve asked Sven to tell us all about
how he built it in the next issue of HackSpace.

C
By Sven Kroesen hsmag.cc/CocktailMachine

Right
Why spend minutes
mixing a cocktail
when you can spend
months automating it?

http://hsmag.cc/CocktailMachine

7

SPARK

Top Projects

REGULAR

8

Orrery

uilding an orrery is a brilliant way to combine
the theoretical complications of maths and
astrophysics with the practical elements of
woodwork, laser cutting, or whatever other
method of making you’re most comfortable
with. In this case, the maker has used copper

pipes to support the planets on their way around the sun. And it
works brilliantly.

There’s no motor or computerised element to this build: it’s just a
laser-cut plywood base, wooden balls to represent the planets, and
that glorious copper piping, T-joints, elbow joints, and end caps, all
rotating around a central steel rod.

B
By MarkH342 hsmag.cc/PipeOrrery

Right
Mark used no-heat
solder to join
the copper parts
together. We had
no idea such a
thing existed!

http://hsmag.cc/PipeOrrery

9

SPARK

Top Projects

REGULAR

10

TechNIK’s
Cyberdeck

e love seeing Raspberry Pis built into fresh
new packages. Nik Reitmann’s cyberdeck
follows a solid, sturdy design that reminds us
of the beige box that used to get wheeled into
the classroom for our regular one hour of early
1990s computing.

It’s based on a Raspberry Pi 4, and the design features a trackball
rather than a trackpad, to save space; it can run DOOM; it can
access the internet over Wi-Fi; and the creator has broken out eight
of the Raspberry Pi 4’s GPIO pins for easy breadboard tinkering.

This build really shines in its execution; all the screws used in
construction are internal, giving it the clean lines of an injection-
moulded product, and there’s even an extra usability feature in the
shape of a scroll-wheel connected to a rotary encoder, for quickly
moving up and down text documents.

W
By Nik Reitmann hsmag.cc/TechNIK-cyberdeck

Right
That gorgeous
screen is a
Waveshare 7.9 inch
HDMI LCD

http://hsmag.cc/TechNIK-cyberdeck

11

SPARK

Top Projects

REGULAR

12

Calendar
progress bar

ere’s one for the minimalists: a progress bar
for your day. It’s a simple, intuitive display that
displays a line of light that grows from left to
right as the working day inches by. And because
it’s connected to the internet via a Raspberry Pi Pico
W and the magic of MicroPython, it can grab data

from your Google Calendar and display when your day’s events are.
Other than the Pico W, the components are simple: just a strip of
RGB LEDs, a frame to hold them (angled aluminium from your local
DIY shop would work), plus a strip of opaque plastic to work as
a diffuser.

H
By VEEB Projects hsmag.cc/ProgressBar

http://hsmag.cc/ProgressBar

13

SPARK

Above
The progress bar can
flash to alert the user
to upcoming events

Top Projects

REGULAR

14

Nerdy Gurdy

ow this is a thing of beauty. Instructables
user Kudlas is a fan of medieval music – the
troubadours, the chivalry, the Plantagenet
romanticism of it all. He also knows his way
around a laser cutter, which is where this creation
was born.

While there are kits available, Kudlas chose to make this from
scratch, starting with a template from the internet which he
modified to produce a superior result. The body is a combination of
3 mm and 6 mm Baltic birch plywood, and there are standard guitar
tuners, screws, and a few 3D-printed parts. Where Kudlas deviated
from the usual build is that, instead of using a threaded rod to
rotate the wheel, he used a smooth piece of linear rod, of the sort
commonly seen in 3D printers, which he reckons should result in a
smoother action when the player turns the wheel. He’s also added a
most excellent green sunburst paint job. Chaucer would approve.

N
By Kudlas hsmag.cc/NerdyGurdy

Right
Do you want a
Nerdy Gurdy of
your own? Head
to nerdygurdy.nl
to get started

http://hsmag.cc/NerdyGurdy
http://nerdygurdy.nl

15

SPARK

Top Projects

REGULAR

16

A La QRTE

ave you ever been to one of those restaurants
that don’t have a paper menu, instead inviting
you to scan a QR code on your phone? If so, and
if you found it as annoying as we do, you could
take a leaf out of Guy Dupont’s book. He’s built this
delightful machine, the A La QRTE, which scans the

QR code, presses it into a simplified format, and prints out a menu
on paper, as is right and proper.

The device runs on a 12 V battery, and uses a QR code reader
from Useful Sensors, and an ESP-32 S3 from Seeed Studio to drive
the printer module. There’s also a little bit of Python involved that
scrapes data from the web and formats it so that it’s printable.
We’re on our phones enough as it is without using them when
we just want a bit of something to eat, so we say this device is a
wonderful slap in the face to an unwanted modern trend.

H
By Guy Dupont hsmag.cc/QRTE

Right
This is a wonderfully
passive-aggressive
tool to make
restaurant-going
more awkward than
it needs to be

http://hsmag.cc/QRTE

17

SPARK

Objet 3d’art

REGULAR

18

Objet 3d’art

REGULAR

18

Objet 3d’art
3D-printed artwork to bring more beauty into your life

chip – even a large,
complicated one – is just a
collection of switches. Ons
and offs, AND gates and OR
gates, inverters, adders: simple

things that, when combined, enable hugely
complicated flows of logic that control
computers. You don’t have to understand
these in order to use a computer (or in order
to use the machines that depend on
computers), but if you’re going to design a
chip, it helps to know what these logical
building blocks are. Shown here is a
3D-printed model of an inverter: a pair of
transistors that takes a signal in (either a 1
or a 0) and converts it to its opposite (a 0 or
a 1). Matt Venn showed it to us when we
spoke to him about his Zero to ASIC course
– thanks to him, we’re now slightly less
baffled about how the world works.

zerotoasiccourse.com

A

http://zerotoasiccourse.com

SPARK

19

SPARK

19

Letters

REGULAR

Letters ATTENTION
ALL MAKERS!

If you have something you’d
like to get off your chest (or
even throw a word of praise

in our direction), let us know at
hsmag.cc/hello

20

ALEXATRON
We’re lucky to live in a time when things
are easy for makers. Unfortunately, this
ease can sort of pigeonhole us into
certain things. There are some off-the-
shelf screens that are really easy to use,
which is great, but it means that
everyone’s projects end up looking
the same because they’ve used the
same screen.

It was lovely to see Thomas Burns
turning away from this and using an
old-fashioned cathode-ray tube. I’m not
sure if he’ll see this, but if you’re reading
Thomas, it brought a simile to my face,
so thanks.

Aaron
Leeds

Ben Says: That really was a beautiful
build. There is something a bit special
about CRTs. I’m not sure if it’s just
looking back to my childhood through
rose-tinted glasses, or if it’s because
everything modern is flat and square so
the curved surfaces look slightly
otherworldly, but seeing them still work
brings a smile to my face too. Thanks,
Thomas.

http://hsmag.cc/hello

SPARKSPARK

21

CARDBOARD FUTURE
I play with cardboard with my kids, and I’ve always thought it was a great
material to use. However, when I read the article about invenTABLE, I instantly
recognised the issue of cutting it. It IS a pain in the backside to cut with
scissors. It’s especially annoying when you have to fold it slightly and it adds
creases where you don’t want any.

I’m not sure that I’ll stretch to the $189 price tag myself, but I hope that I’ll be
able to persuade my daughter’s school, or perhaps the craft club at the local
library, to purchase one.

Stephen
York

Ben Says: That’s the beauty of shared spaces, be they hackspaces, maker
spaces, libraries, or any other group. Tools that would be too expensive for an
individual are much easier to acquire. For us grown-ups, that might be a table
saw or laser cutter, but tools like this are great for young makers.

IN PRAISE OF JEFF
Can I just say that I’m a massive Jeff
Geerling fanboy? There are plenty of
excellent technical people in the world
who can make computers do all sorts of
fantastic things. There are also many
excellent communicators in the world
who can keep me reading or watching
videos. However, there are very, very few
people who fall into both camps. I have
no real interest in hooking up a graphics
card to a Raspberry Pi (I don’t even use
one in my desktop), however, I can quite
happily watch Jeff try for hours on end,
and I learn a bit about the intricacies of
the Linux kernel along the way.

Joseph
Dover

Andrew Says: It’s a rare gift to be able to
understand something and also help
others understand it, and we’re lucky to
have people like Jeff in our community
who can do this. It’s been a pleasure
watching his videos over the years, and
it was a pleasure speaking to him for
the interview.

A cost-effective solution for data-centers,
IT departments or remote machines!

Available at the main Raspberry Pi resellers

PiKVM
Manage your servers or
workstations remotely

Reseller suggestions and inquiries:
wholesale@hipi.io

PiKVM HAT
for DIY and custom projects Pre-Assembled version

Real-time clock with rechargeable super capacitor OLED Display Bootable virtual CD-ROM

& flash drive Serial console Open-source API & integration Open-source software

http://hipi.io

LENS
HACK MAKE BUILD CREATE
Uncover the technology that’s powering the future

You too can go from zero
knowledge to building your
own computer chip

INTERVIEW:
MATT VENN

44
PG

PG24

Build your own intelligent
robot with AI and the new

Raspberry Pi
Play MP3s with big chunky
buttons. Don’t leave me hanging
on the telephone!

HOW I MADE:
JUKEPHONE

36
PG

Raspberry Pi 5

ROBOTICS

Raspberry Pi 5 robotics

FEATURE

24

Build and program an AI robot

he Raspberry Pi 5 is here and ready to
supercharge your projects. We’ve looked
at it in detail over the past two issues, but
briefly, it’s got more processing power,
faster memory, and faster interfaces than

previous models. Let’s take a look at what this means
to just one area: robotics.

You can drive motors with the puniest
microcontroller. In fact, you can drive motors without
any processing power at all and use sensors (such as
light-dependant resistors) to directly control motor
drivers and get interesting behaviour. However,
with more computing power, you can do more
complex things.

We’re going to use two features of Raspberry Pi 5 to
bring image recognition to our robot. Firstly, we’re
going to use both available camera slots to give our
robot two eyes, and secondly, we’re going to run both
camera streams through a TensorFlow image
recognition model. With Raspberry Pi 5’s increased
computation power, we can run both streams faster
than we could run one previously.

Raspberry Pi 5

ROBOTICS

T

LENS

25

Raspberry Pi 5 robotics

FEATURE

26

Giving your robot a body

Pick your hardware

STEPPER MOTORS These motors turn a single step at a time (with a fixed number
of steps per rotation). You can control them very precisely – for this reason, they’re
usually the type of motor controlling 3D printers and similar machines. They’re a little
more complex to use and more expensive than DC motors (though are becoming easier
and cheaper).

CONTINUOUS ROTATION SERVOS A servo is a motor with a feedback
mechanism to allow it to sense where it is. Usually servos can’t turn a full rotation, and
cover an arc of around 180 degrees. However, continuous rotation servos can turn all
the way around. They can be easy to use, but are often slower than other types of motor.

AC MOTORS As the name suggests, these take alternating current rather than direct
current, and are usually used for powerful mains-powered devices. As such, there are
more risks with using them, and they’re not commonly used in hobbyist robotics.

BRUSHLESS MOTORS These are basically the same as stepper motors but
typically designed to be efficient. You can get very powerful small brushless motors, and
they’re used in everything from quadcopters to electric scooters. They need specific
motor drivers (often called electronic speed controllers, or ESCs).

OTHER TYPES OF MOTOR

heeled robots are
simultaneously complex and
simple. The basics of strapping a
motor to a computational device
and setting it running are usually

fairly straightforward. Getting it to move in
precisely the way you want, over the terrain you
want, to the place you want, is a complex field of
study that takes years to master.

Everything starts with the motors. These are
what drive your robot, so everything else fits
around them. What motors you want to use will
determine which chassis you want and what
electronics you need.

Small hobbyist robots usually use one of two
categories of motor: plastic motors that are always
(and for reasons we don’t understand) yellow, and
metal ‘N20’ motors. Both are ‘DC’ motors that will
rotate continuously when a voltage is applied.

Plastic motors are cheap and ubiquitous. They
come in a few different voltage options, so make
sure that this matches what power supply you’re
planning to use. They also have a few different
physical configurations. None of them are
particularly small, but they fit differently onto the
chassis. If you’re planning on using an encoder,
you’ll need a version where the axle comes out of
both sides of the motor housing.

N20 motors are a bit more expensive, smaller,
and should be more robust. They also come in a
range of voltage versions. N20 motors often
come with an attached gearing, and the range can
vary significantly. This can let you select whether
you want a motor with a higher top speed or
more torque.

As well as the type of motor, you need to decide
on the number of them. Typically, this is two or
four. With two motors, you can use a caster to
balance the other end. With four, you can generate
more power, and if you use mecanum wheels, get
more complex movements. Four motors will also
give you more control on carpet and other floors
that aren’t smooth.

No two motors are exactly alike, and this means
that if you buy two of the same model, put them
on either side of a robot, and power them in the

W

LENS

27

same way, the robot won’t go straight. It’ll do a
gentle curve to one side or the other. You can
minimise this in software, but you can’t eliminate
it. How big a problem this is depends on what you
want your robot to do. If it’s being directed by
sensors, then it’s often not a problem that it’s not
heading in exactly a straight line as it can
continuously correct itself. However, if you do
want it to go straight, the solution is encoders.
These are sensors that attach to the wheel or
motors that detect each time the wheel rotates.
Using these, you can sense how much each wheel
is moving and dynamically adjust the power. This
isn’t a perfect solution because they detect how
much the wheel is rotating, but if the wheel loses
traction, this won’t necessarily correlate to how
much the robot is moving.

Now you’ve got your motors, you’ll need
something to mount them on. You can buy a
chassis off-the-shelf, or you can make one. The
most complex bit is usually attaching the motors.

You can get purpose-made
motor mounts, though this
can also be done with glue,

tape, or cable ties

Below
This chassis has two
wheels and a caster.
This configuration is
easier and cheaper
but a bit less stable
and less powerful

You can get purpose-made motor mounts, though
this can also be done with glue, tape, or cable ties,
if you’re that sort of maker.

Obviously, your chassis has to provide enough
space to mount the hardware you want. In our
case, this is a Raspberry Pi 5, a motor driver board,
two cameras, and two batteries.

We’ve opted to use yellow plastic motors on an
off-the-shelf chassis that works with four motors.
Two of the motors did come with encoders,
though we’re not using them for this project. This
gives us a large, sturdy base on which to mount all
our hardware.

Raspberry Pi 5 robotics

FEATURE

28

Control your bot

Electronics

e’re basing our robot on
Raspberry Pi 5. You could use a
different model of Raspberry Pi,
though you wouldn’t be able to
have two cameras, and if it’s a

pre-version 4 Raspberry Pi, you might struggle to
get the software to run at a sensible speed.

Alongside this controller, we’re going to need a
motor driver and power supplies.

Although Raspberry Pi 5 has a range of GPIO
pins, these can only drive small currents, so can’t
power the motors directly. Instead, it has to go via
a motor driver which can power larger currents
and voltages. There are a lot of different motor
driver boards out there. The three things that
you want to consider when picking a motor
driver board are:

POWER Does it match the power of your motors?
It has to be able to run at the voltage of your
motors and handle (at least) the amount of current
they consume. Current is given in amps, and it
might be per channel (i.e. per motor) or across all
motors. The more work motors have to do, the
more current they will consume – with the
maximum being the ‘stall current’, which is the
amount of current they take if the motor is
jammed and not moving. If you’re unsure how
much current your motors consume, you can hook
them up to a power supply and measure it using a
multimeter. The more force you apply to the
motors as they spin, the more current
they’ll consume.

Most of the time, a motor driver will use an
external power source (i.e. not the Raspberry Pi’s
power output). You need to match the voltage it
can take here with both your battery’s output and
the voltage that the motors can take.

SOFTWARE SUPPORT Does it come with a way
of controlling it using the programming language
you’d like to use? We’re going to look at Python,
but you can use whatever you want. Some
hardware manufacturers provide Python libraries,
and some leave you on your own.

FULL H-BRIDGE You can control a motor by
applying a voltage to it, and this can be done with
something like a MOSFET or a relay, but a full
H-bridge will give you the ability to go in reverse
(and brake and coast, but the effectiveness of
these depends on the motor). You will also want
the ability to control speed, which is typically done
using pulse-width modulation (PWM), so make
sure your controller can support this.

W

Below
The four motors
connect into the screw
terminals on the HAT

LENS

29

NUMBER OF MOTORS This, fairly obviously,
should be at a minimum the number of motors
you plan to use. In some cases, it’s possible to add
more than one of the motor drivers to a Raspberry
Pi, in some cases it’s not, so if you plan on using
multiples, check if the hardware and software
support this.

ADDITIONAL HARDWARE You may well want
to attach more hardware to your Raspberry Pi than
just the motors and cameras. Does your motor
controller support this? Some have additional
hardware built in, some break out unused GPIO
pins, and some include a prototyping area for you
to add your own hardware to.

We opted for an Adafruit DC and Stepper Motor
HAT. It’s a good size, and can handle enough
power for four motors. It’s got an easy-to-use
Python library, and although we didn’t choose it

because it had an available schematic, this did
help us fix a problem while we were getting the
robot wired up.

As well as a motor driver, you’ll need power. It
is possible to power both motors and Raspberry Pi
from the same battery, but this can cause
problems as the motors can create a lot of
electronic noise on the power lines. It’s a solvable
problem, but we chose to sidestep it entirely by
using two power supplies – a rechargeable USB-C
battery for the board, and six AA batteries for
the motors.

You will also want the ability
to control speed, which is
typically done using pulse-

width modulation

Left
Hot glue is great for
testing because it’s
quick, firm, but also
does come apart

Below
It can be a bit fiddly to
get the camera cables
into the connectors.
Take it slowly because
they are delicate

Raspberry Pi 5 robotics

FEATURE

30

Adding the intelligence

Putting it all together

e’ve got our robot hardware and
electronics. Let’s put it all
together and get our robot
running. One slight issue with
Raspberry Pi 5 is that the layout

is a bit different to previous versions. Firstly, we
want to make sure there’s space for the active
cooler; secondly, the ribbon connectors for the
cameras are in slightly different positions. This
means we can’t just plug the HAT in normally.

We could raise up the HAT, but it would have to
be pretty high to allow the camera cables to pass
underneath. Instead, we opted to simply use header
wires to join the GPIO pins and the HAT. It’s not
always obvious which GPIO pins are used by a
HAT, but fortunately, Adafruit releases the
schematics, so we can take a look and see that it’s
3.3 V, GND, GPIO 2, and GPIO 3. Join those together
and everything works as expected.

The chassis we have has a lot of mounting holes,
but none quite right for our Raspberry Pi and HAT,
so we 3D-printed a couple of mounts. We could
have added screw holes for these, but a few drops
of superglue served the job just as well.

The only part left is the cameras. Obviously the
big question is where to point them. One option is
to have them both pointing forwards to create a
stereoscopic image that can be used for depth
perception. We have experimented with this, and
will look at it more in the future. For this robot, we
opted to place the cameras facing diagonally out to
give the robot a huge field of vision. This is similar
to how many prey animals have their eyes. Look at
a sheep, horse, or cow and their eyes face sideways
so that they can take in a much greater range of the
surrounding landscape.

To mount the cameras, we 3D-printed a camera
mount (hsmag.cc/cammount) which, by default,
has a tripod mount, but we added on a 3 mm thick
rectangle to slot into the rails on the chassis.

That’s the hardware all set up, let’s now take a
look at the software.

LEARNING TO THINK
The first bit of software we’ll test is the motor
drivers. Obviously, this will vary depending on
exactly what hardware you opted for, but here is
how to get the Adafruit control board running.

The board communicates with Raspberry Pi over
a protocol known as I2C, so we need to enable
support for this in the OS.

W

Above
Although this HAT doesn’t fit on the new layout, we can route
through the necessary connectors because the design is open

Below
The outward diagonal
placement of the
cameras gives the robot
a wide range of vision

http://hsmag.cc/cammount

LENS

31

Once you’ve got that, you can move on to the
Python libraries. There’s been a slight change in the
way Python handles modules in the latest version
of Raspberry Pi OS.

Previously, there was a slight problem. You could
install packages via the operating system with apt,
but also via the Python package manager pip. The
two systems had different versions of the software
available and could generally get in a mess with
each other. Now, you can only install packages via
apt. This should mean that you can’t get into a
system with incompatible packages.

However, there aren’t as many packages
available via apt as there are via pip. You also don’t
have as much control about the versions of things
you install. The solution to this is virtual
environments. This is basically a way of
encapsulating a set of modules so you can use
them in a particular project, but they don’t affect the
rest of the system. If you want to use them again in
another project, you’ll have to install them again in
the virtual environment for that project.

mkdir robot
cd robot
python3 -m venv robot

By default, the virtual environment will exclude the
modules that you have installed through apt. We
don’t want that, so we have to enable site packages.
Open the pyvenv.cfg file in the directory with a text
editor and change the line:

include-system-site-packages = false

…to:

include-system-site-packages = true

You should now find that inside your directory you
have a directory called bin. This contains the
executables for your project.

To use the virtual environment, you need to
activate it with:

source ./bin/activate

If you close the terminal, you’ll need to navigate to
the directory and run this again in order to activate
the virtual environment in the new terminal.

Inside the virtual environment, the Python and
pip commands will be used under their local
configurations. Anything you install with pip will
only be available inside this virtual environment. If
you want to install a package for multiple projects,
you can either install it via apt (if it exists there), or
reinstall it in each place.

With the virtual environment active, run the
following to install the library for the motor HAT:

pip3 install adafruit-circuitpython-motorkit

Now run the following code. All the motors should
come on.

from adafruit_motorkit import MotorKit
import time

kit = MotorKit()

max_speed = 0.5
motors_forward = [1, 1, -1, -1]
motors = [kit.motor1, kit.motor2, kit.motor3, kit.
motor4]

def all_to_speed(speed):
 for num, motor in enumerate(motors):
 motor.throttle = speed * motors_forward[num]

Above
All our input from the
camera and output to
the motors flows through
the RP1 chip on the
Raspberry Pi 5

For this robot, we opted to
place the cameras facing
diagonally out to give the

robot a huge field of vision

Raspberry Pi 5 robotics

FEATURE

32

all_to_speed(max_speed)
time.sleep(3)
all_to_speed(-1*max_speed)
time.sleep(3)
all_to_speed(0)

This should spin all your motors forwards for three
seconds then backwards. Depending on the wiring,
the motors may or may not spin in the right
direction. If they’re spinning the wrong way, you
can either change the wiring or change the value in
the motors_forwards list to either 1 or -1.

If this throws any errors, then you’ll need to fix
them before continuing. The most likely problem is
with I2C, so make sure it’s enabled and that the
wiring is correct.

ADDING INTELLIGENCE
Our motors now work. We’ll get vision working
before bringing the two back together. We’re
going to make our robot a search bot. It will use
its cameras to detect particular objects and move
towards them until it’s got them.

The first step, then, is to get it to recognise
things. We’ll do this using the TensorFlow Lite
neural network system. This takes a pre-trained
model into which it feeds images. If the model sees
something it’s been trained to detect, then it
outputs details of where the object is.

We’re going to use the MobileNet model, which
is trained on the Coco dataset. The latter is a
collection of images that are labelled with 91
common items. Training on this dataset means
the model should have a good chance of
detecting one of these items in a broad range of
situations. You can take a look at the dataset at
cocodataset.org/#explore.

In our code, you can select one of these object
types and the robot will try and find it. The actual

search algorithm is incredibly primitive. If it sees
the object on one camera, it will activate the motors
on the opposite side and thereby turn towards it.

The full code for this is at hsmag.cc/aibot.
We’ll need to install some dependencies for this

to work. With the virtual environment active, run
the following:

sudo apt install libatlas-base-dev

pip install tflite-runtime
pip install opencv-python
pip install pillow
pip install numpy

You’ll also need the TensorFlow Lite model and
dataset labels. You can download coco_labels.txt
and mobilenet_v2.tflite from hsmag.cc/ai-files.

You can then run everything with:

python3 real_time_with_labels.py --model mobilenet_
v2.tflite --label coco_labels.txt

This should display on the screen two preview
windows, and each one should be performing the
detection separately.

You can control the particular thing that robot is
looking for with the seeking variable:

seeking = "person"

The string in this variable should match one of the
object types in coco_labels.txt.

The main control loop is:

def set_motors(left, right):
 left_speed = 0
 right_speed = 0
 if left:
 left_speed = max_speed * left_direction
 if right:
 right_speed = max_speed * right_direction

 kit.motor1.throttle = left_speed
 kit.motor2.throttle = left_speed
 kit.motor3.throttle = right_speed
 kit.motor4.throttle = right_speed

while True:

 buffer = picam0.capture_buffer("lores")
 grey = buffer[:stride * lowresSize[1]].
reshape((lowresSize[1], stride))
 found_left = InferenceTensorFlow(grey, args.
model, output_file,0, label_file)

Right
This motor HAT is well
supported and can
power up to four motors

http://cocodataset.org/#explore
http://hsmag.cc/aibot
http://hsmag.cc/ai-files

LENS

33

 buffer = picam1.capture_buffer("lores")
 grey = buffer[:stride * lowresSize[1]].
reshape((lowresSize[1], stride))
 found_right = InferenceTensorFlow(grey, args.
model, output_file,1, label_file)

 set_motors(found_left, found_right)

Picamera2 has the ability to return two images
simultaneously, a high-resolution one and a
low-resolution one. In this case, we’re grabbing
the low-res version to run the TensorFlow Lite
model on. We’re processing it to extract just the
brightness component, and then passing it to the
InferenceTensorFlow method.

def InferenceTensorFlow(image, model, output, camera,
label=None):
 global rectangles

 if label:
 labels = ReadLabelFile(label)
 else:
 labels = None

 interpreter = tflite.Interpreter(model_path=model,
num_threads=4)
 interpreter.allocate_tensors()

 input_details = interpreter.get_input_details()
 output_details = interpreter.get_output_details()
 height = input_details[0]['shape'][1]
 width = input_details[0]['shape'][2]
 floating_model = False
 if input_details[0]['dtype'] == np.float32:
 floating_model = True

 rgb = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
 initial_h, initial_w, channels = rgb.shape

 picture = cv2.resize(rgb, (width, height))

 input_data = np.expand_dims(picture, axis=0)
 if floating_model:
 input_data = (np.float32(input_data) - 127.5)
/ 127.5

 interpreter.set_tensor(input_details[0]['index'],
input_data)

 interpreter.invoke()

 detected_boxes = interpreter.get_tensor(output_
details[0]['index'])

 detected_classes = interpreter.get_tensor(output_
details[1]['index'])
 detected_scores = interpreter.get_tensor(output_
details[2]['index'])
 num_boxes = interpreter.get_tensor(output_
details[3]['index'])

 for i in range(int(num_boxes)):
 top, left, bottom, right = detected_boxes[0]
[i]
 classId = int(detected_classes[0][i])
 score = detected_scores[0][i]
 if score > 0.5:
 if (labels[classId] == seeking):
 print("found on camera ", camera)
 return True
 return False

After setting up the data in the correct format, this
runs the TensorFlow model which returns a list of
objects it’s found and details about them (including
a bounding box). We go through this data looking
for any that has a score over 0.5 (the score is how
confident TensorFlow is in the object), and a class
that matches the seeking variable. If something
matches this, it returns True, otherwise it returns
False, and we use these return values to determine
which motors to engage.

Our robot is in some ways very simple: there are
four motors that are either switched on or off
depending on whether a person is seen on a
particular camera. On the other hand, it’s really
complex – it’s using a neural network to identify the
objects in an image. We’re just using it as an
example to get you started. From here, you can
adapt this robot in a huge range of ways – you can
look into using different TensorFlow Lite models, or
you can change its behaviour when it sees a
particular object. This same basic technology
can control other hardware. Where
you take this project is
up to you.

Below
The Raspberry Pi 5 has
enough power to run
object recognition on
both cameras at the
same time

SUBSCRIBE
TODAY

£30 UK / €43 EU / $43 USA & Canada

GET SIX
ISSUES
FOR JUST:

FREE
Pico W

for subscribers!

SUBSCRIPTION

hsmag.cc/subscribe

SUBSCRIBER BENEFITS:
> �Get every issue of

HackSpace magazine
delivered to your door

> �Early access to the
PDF edition

> �Beat the crowds with
guaranteed Raspberry Pi 5
stock for subscribers

> �Get a free Raspberry Pi
Pico W

Subscribers will get a voucher giving them the chance to purchase one Raspberry Pi 5 from reserved stock at The Pi Hut (thepihut.com) for full retail price. Reserved stock means that these will be available even if they are out of stock for general purchase.

GUARANTEED
RASPBERRY PI 5
AVAILABLE NOW
for all subscribers

http://hsmag.cc/subscribe
http://thepihut.com

How I Made: Jukephone

FEATURE

36

s an electronics tinkerer, I
get a thrill from perusing
the shelves of local charity
shops in search of old gadgets
I can creatively revamp. I

look for things to take apart to see their
inner workings, and uncover the system of
mechanical and electronic parts that make
them function. On one such quest, I came
across a dismissed landline telephone with
chunky keys, which was practically begging
to be hacked into something else. The
moment I saw it, ideas started swirling in my
head about how I could give it a new life.

I initially focused on the keypad alone,
thinking it could become a comically
oversized numeric pad for a laptop (I might
still do this). I would have then been left with
a decent, spare speaker and a microphone.
But I knew that with the right alterations,
this retro relic could sing a new tune. So,
in a musical twist, I came up with the idea
of a personal jukebox, encased into the
telephone, that would let me play tunes by
dialling out their track number.

I started by disassembling the device and
inspecting it to figure out how to incorporate
as many original components as possible into
my new design.

AHOW
I

MADE
JUKEPHONE

By Turi Scandurra

Want some music? Just dial-a-tune

37

LENS

What I used
>	� Landline telephone (I’m afraid a rotary dial phone won’t do it)

>	 Raspberry Pi Pico

>	� DFPlayer Mini (or MP3-TF-16P clone) – MH2024K-24K,
MH2024K-16SS and many more chips are supported

>	 microSD card – 8GB or more is recommended

>	 TP4056 battery charger module

>	 JST plugs

>	 18650 or equivalent lithium battery

>	 1000 μF electrolytic capacitor

>	 2 × 1 kΩ resistor

>	 3.5 mm audio socket

The keypad, with its playful large keys,
was surely the main hardware feature and
had to stay in its place. The little status LED
and the piezoelectric buzzer, which I carefully
desoldered from the PCB, seemed perfect to
serve as feedback indicators. The telephone
had a toggle switch on the back to set the
ringer volume. I could have wired it to act as
a power switch, but then I decided to lose it
and use the spring-loaded switch underneath
the handset instead. I believe this change
was a clear steer towards a more accessible,
human-centric design. There is some beauty
in the way you answered a call on a landline
telephone – you would just lift the handset
and listen. With no buttons to press, it
was just the natural gesture of bringing the
speaker to your ear. That’s the right level of
simplicity that I wanted for the final users
of my new object. And after all, listening to
music through the handset speaker is what
gives this music player its quirky character.

Since the original PCB was inevitably
going to become e-waste, my creation
needed a new brain. The microcontroller I
use most often these days is the RP2040,
specifically in the form of a Raspberry Pi
Pico. It’s powerful but also energy-efficient,
offers plenty of GPIO pins, and its price is
very affordable.

Above
Raspberry Pi Pico
provides a powerful
and affordable brain

38

How I Made: Jukephone

FEATURE

While the Pico can be programmed
to produce audio output via pulse-width
modulation or I2S – like I did with some of
my previous projects – its capabilities are not
quite right to get high-quality music playback.
So, I picked a separate music player module,
the popular DFPlayer Mini. It can play audio

files from a microSD card,
has a built-in amplifier to
drive a small speaker, and
can be controlled digitally via
UART communication.

Armed with my soldering
iron, I first rewired the
telephone’s keypad through
a ribbon cable and to a
perfboard on which I had
soldered two pin header
sockets for the Pico. The

connection between the keypad and the Pico
GPIO pins allowed me to start writing code
and let the controller detect key presses.

For this project, I used four C libraries that
I had already written and one created by
another developer that I ported to the Pico.
I like to break down my code as much as

possible into a modular structure that lets
me reuse components between projects,
and every project is an opportunity to write
new libraries.

C LIBRARIES
The most recent one is RP2040-DFPlayer,
which implements the UART communication
protocol to send instructions to the MP3
player and poll its status. Without it, the
features of the Jukephone would have been
limited to only basic actions like starting the
playback of the first track, dialling the volume
up or down, and skipping to the next track.
I took time to study the datasheet of the
player and unlocked features like equaliser
presets, playback modes, and querying of
playback status.

RP2040-Keypad-Matrix is another crucial
component of this project’s software. It
alternates write/read cycles across the
rows and columns of the matrix to poll it for
changes, and discern between short and long
key presses.

Even though the buttons produce a
tactile feedback on their own, I made it so

“ I USED FOUR
C LIBRARIES”

Above
The phone’s battery
is recharged via
USB-C

LENS

39

DFPlayer uses just two wires for TX and RX,
one of which is filtered with a 1 kΩ resistor to
reduce noise.

POWER PARTICULARS
The output pins of the MP3 player go straight
to the speaker inside the handset. There’s
also a 3.5 mm mini-jack socket, connected
to the player’s built-in DAC, so you could
plug headphones or external speakers into
the back of the Jukephone. Sound quality is
much higher through this output and, unlike
the handset, it’s a stereo output.

The whole project is powered by a 3.7 V
lithium battery, recharged by a TP4056
module via USB-C. This little module is a
staple for all my portable designs as it also
provides overcharging and undercharging
protection, for prolonged battery life. I can
say I treat my batteries fairly well because I
never heard them complaining.

that the little LED blinks shortly after each
key is pressed, together with a short beep
emitted by the phone buzzer. For that, I used
RP2040-PWM-Tone, my tone generation and
melody player library for Raspberry Pi Pico. I
initially used it to play a start-up melody, but
finally settled for a quiet start-up because
I feared a jingle would get annoying in the
long run. When designing products, it’s
tempting to add features just because the
tech allows you to, but ‘possible’ does not
mean ‘necessary’. Ultimately, this is an open-
source project, so adding the melody back
would require just one line of code, since a
few sample melodies come bundled with
the library.

A nice little utility that I add to all my
machines is provided by the library RP2040-
Battery-Check, which, as the name suggests,
periodically checks the battery voltage and
rapidly flashes the LED when it’s time to
recharge it.

The last library I included
is RP2040-Button (the
one I ported from another
developer’s work), which is
needed to detect presses of
one lone key that is not wired
with the rest of the matrix.

The main software logic
is pretty straightforward.
Key presses are debounced,
numbers concatenated and
clamped between 1 and 999.
When a valid track number is
entered, after a short timeout
the MP3 player is sent a
command with the ID of the
new track to play. The chip
on the MP3 player is able to
pick a random track to play on
its own, but I added my own
playlist randomisation function
on the Pico, which means
that tracks do not repeat
until the whole playlist has
played entirely. However, the
Jukephone I set up contains
over two days’ worth of
music, so I don’t think it will
happen often.

UART communication
between the Pico and

Below
I’m pleased with
the finish on the
red paint

40

How I Made: Jukephone

FEATURE

It might have been overkill here, but I’ve
taken the habit to always add a decoupling
capacitor of around 1000 µF just after the

power stage to help
stabilize the voltage
and squash any ripples
that might pop into
my circuits. It’s worth
noting that technically
the charging module
could simultaneously
provide energy to the
battery and the rest of
the circuit, but doing so
is not recommended

as it interferes with the charge cut-off,
increasing the risk of overcharge.

Opting for no changes to the original
plastic housing meant that I had to repurpose
the openings for two toggle switches and
for the RJ11 socket that once connected the
telephone to the wall. They became natural
slots to access the microSD card, the USB-C
charger, and the headphone jack.

FINAL ASSEMBLY
My perfboard – holding the Pico, the player,
and the few discrete components – was
perforated further in order to open two
mounting holes and secure it to the housing.

I 3D-printed a custom mount for the
TP4056, which locks nicely around the
housing wall and a standoff, while also
raising the module to its perfect placement
and angle. The lithium battery, connected to
the charger via a pair of JST plugs to make it
swappable, was secured to the housing floor
with a dab of hot glue.

The telephone’s exterior went under a DIY
makeover with a few coats of spray paint.
And no other colour screams ‘touch me’ like
shiny red! I then labelled the keypad buttons
with metallic purple paint markers. The coiled
handset cord is the only part I needed to
replace, as painting over the old one was not
going to offer a durable finish.

I loaded the microSD card with 999 MP3
files, organised so that there’s one hundred
per genre (except the first 99). Specific tracks
can be invoked by typing their number on
the keypad. I replaced the old directory card
under the handset with a printout of the
genres available.

“ I HID AN
EASTER EGG IN
MY BUILD”

Above
Perfboard is great
for one-off projects

41

LENS

LINKS
> turiscandurra.com/circuits
> github.com/TuriSc/Jukephone

The six additional keys below the large
numeric keypad were programmed to
perform useful actions, like increasing
and decreasing the volume, pausing and
resuming playback, restarting the current
track, toggling repeat mode for the current
track, playing a random track, and rotating
between five sound equalisation presets.

In thinking of a future iteration of this
project, my mind goes to the possibilities
of an internet-enabled device. While still
retaining the central feature of track selection
by numeric input, it could enable a Wi-Fi
back-end to customise the playlist with web
resources to stream.

I hid an Easter egg in my build. Dialling a
specific number triggers a voice message

that says: ‘Thank you for calling the
Jukephone Helpline. All our operators are
busy at the moment, please try again later.‘

I can imagine the small person who
will receive my first Jukephone as a gift
getting ready for bed, tapping out children’s
tunes until she gets sleepy. Hopefully it will
stay functional until she’s old enough to
appreciate the rest of the playlist.

Finding an old gadget a new home
rather than the landfill is rewarding both
creatively and environmentally. I can feel my
Jukephone evoking a sense of nostalgia for
relics of the past, but in the end it represents
the joy of second chances. And even though
it’s not really a telephone any more, it still
does phone home in a certain way.

Above
Big numbers and
bright red: this
phone wants to
be noticed

http://turiscandurra.com/circuits
http://github.com/TuriSc/Jukephone

PLAY
& CODE
GAMES!

BUY ONLINE: magpi.cc/store

RETRO GAMING
RASPBERRY PI

W I T H

2 N D E D I T I O N
Retro Gaming with Raspberry Pi shows you how to set up a

Raspberry Pi to play classic games. Build your own games console or
full-size arcade cabinet, install emulation software and download classic

arcade games with our step-by-step guides. Want to make games?
Learn how to code your own with Python and Pygame Zero.

 Set up Raspberry Pi for
retro gaming

 Emulate classic
computers and consoles

 Learn to code your 	
own retro-style games

 Build a console,
handheld, and full-size
arcade machine

http://magpi.cc/store

Matt

				 Venn
Matt Venn

INTERVIEW

44

 HackSpace magazine meets…

e’re familiar with the idea of open-source
hardware: designs that a motivated user
can download, modify, and rebuild for
themselves. But the idea of designing
your own chip is surely out of bounds
for mere individuals. The Raspberry Pi

Foundation spent in the region of $10 million to develop the
RP1 chip that sits on the Raspberry Pi 5, for instance; Apple,
using a more modern production technique, will have spent
many times more than that. Thicknesses of functional
parts are measured in nanometres, and are getting smaller
with every generation of chip manufacturing process. The
Raspberry Pi 4, for example, used an Arm Cortex-A72 chip,
which used a 16nm process; right now, the world’s leading
chip manufacturer, TSMC, is developing a 1.5nm process. The
scale of the investment required is mind-boggling.
Luckily for us, there is a way that we can get involved. Matt
Venn, with his Zero to ASIC course (zerotoasiccourse.com)
has partnered with Tiny Tapeout, a service that enables
users to buy a part of a chip wafer on which they can have
engraved their own chip design. It’s beyond the ability of
most to create a fully functional CPU, but we can instead
make a chip that does one thing, and one thing only: an
application-specific integrated circuit, or ASIC. Welcome
then, to the mind-blowing world of homebrew chip design.

W

Chip design: the next frontier of open-source hardware

Matt Venn

http://zerotoasiccourse.com

Matt

				 Venn
45

LENS

Matt

				 Venn
Matt Venn

INTERVIEW

46

The course is fully designed to be
asynchronous. I always wanted it to be
able to scale beyond the kind of
synchronous workshops that I used to run
regularly at hackspaces
and makerspaces.

HS On your website, in the FAQs, you talk
about the fact that you use open-source
tools. As I understand it, microchips are a
multi-million billion trillion dollar
industry – so how on earth is it possible to
design something like a microchip with
open-source tools?

MV Let’s just go back in time and think,
when Linux first came out, people were
paying a lot of money for operating

systems. The idea that you could have a
free, open-source operating system was
ridiculous. And the same thing happened
with MySQL, the database. And the same
thing happened with the GCC compiler.
And then Arduinos – before Arduino, you
had to spend $200 or $300 on a
programmer, and pay for the licence of the
software, and so forth. And then, when the
Arduino came along, you just needed to
buy a $30 board and plug it into your
computer, and you were off.

So, this is the beginning of the journey of
open-source chip design. You can pick
examples of stuff that we’re doing that is
pretty impressive, like RISC-V cores with
built-in 5GHz radio transceivers and stuff
like this. But to be honest, the majority of
the projects are kind of experimental, or
people trying things out.

Most of the people involved are not
professional chip designers. I was looking
at a submission this morning, which was a

”

” Instead of
designing a chip

 that’s a
$100,000 endeavour,

make it a
$100 endeavour

re-creation of an old-school sound chip.
Someone’s had the idea to recreate a chip
that you can’t buy off the shelf, or maybe
you could have bought off the shelf and
you can’t any longer.

There’s also a rule of thumb, which is
that an FPGA [a field-programmable gate
array – an integrated circuit that can be
reconfigured to fit different use cases] will
generally perform ten times better than a
CPU, and an ASIC will perform ten times
better than an FPGA.

If you’ve got a given task that you want
to complete, then an ASIC will be 100 times
faster than a CPU. That’s why when Bitcoin
was all the rage, the only way to really be
involved was to buy ASIC miners.

We’re using a 20-year-old
[manufacturing process], so we
lose that 10 times performance
gain; probably, if you’re very good
and experienced, you might be able
to get equivalency on a CPU if you
knew what you were doing. So we
can’t really compete with, say, the
RP1, the chip that just came out on
a 22-nanometre process, where
people are buying in IP blocks from
here and there that are very
performant already.

But you can do weird experiments that
you wouldn’t dare to do if you were
spending a million pounds on every
tapeout. So really, the idea is to get more
people into it, to open the door. Instead of
designing a chip that’s a $100,000
endeavour, make it a $100 endeavour. And
see what happens. Maybe we’ll see the
same revolution that we saw with Linux,
MySQL, GCC, and Arduino.

HS Are we reaching a sort of natural user
limit with Moore’s Law, that transistors on
CPUs just physically can’t get any smaller,
so to increase performance, you have to
build chips dedicated solely to one task
rather than using a general CPU?

MV There are quite a few different strands.
There’s Moore’s Law coming to an end.
Then there’s… the West has experienced
supply chain shocks during Covid, that
have awakened people to the fact that the

HACKSPACE Zero to ASIC then: what’s it
all about?

MATT VENN So it’s called the Zero to ASIC
course; the idea is that you can take the
course and go from zero chip design, or
digital design or ASIC knowledge, and at
the end of it, do a takeout and get a chip.

HS Literally zero knowledge?

MV Well, a bit of prior programming
experience is useful; you don’t do any
programming in the course, but it just
means that you’re familiar with an editor
– you’re familiar with writing code-like
stuff. And I also say that a bit of Linux
experience is useful, because all the tools
are mostly Linux-focused. If you’re
hitting the command line for the
first time, that can be a big jump.
We have a support forum. We use
Discord for that. And we have a
section of that for people who
need Linux support. Questions
like ‘What the hell is a command
line anyway?’

I normally include the top-level
instructions in the course material,
and one of the things that I have
done is I always record myself completing
the tasks that I’m setting. So the course is
made up of labs, which are practical
experiments. And I record myself solving
the challenge, doing the practical
experiment, and that’s a way for people to
get back on track if they get truly lost.

HS How long does it normally take
someone to go from zero to designing a
completed chip?

MV It really depends on how much time
someone has. It takes maybe 30 or 40
hours of study and practice to get from one
end to the other. Some people spread it out
over six months or a year. And some
people do it in one week.

If you’re a student and it’s your summer
holiday, and you’re really interested, you
can just smash through it really quickly. If
you’ve got a full-time job and a family, then
obviously it’s going to take you longer.

Matt

				 Venn
47

LENS

semiconductor supply chain is the longest
and most complicated in the world, and
almost every high-value industry sector is
dependent on semiconductors at some
level. So, if you can’t get computer chips or
servers, then you probably can’t run your
business anymore.

Like, what happened with the car
manufacturers – they just had to shut
down their factories because they couldn’t
get chips. So there’s Moore’s Law, and
there’s wanting to be independent and
that independence.

The EU and the US have put in $100
billion together to invest in the sector. But
building factories and building capabilities
is no good if you don’t have the people.

And in the EU Chips Act, they’re
saying that there’s going to be something
like a 100,000 people shortfall in the next
ten years. So where do those people
come from?

Well, maybe they did some basic digital
design stuff, or some basic ASIC stuff when
they were a teenager, rather than at PhD
level, which is when you normally get to
do your first tapeout.

People have been saying Moore’s Law is
ending every year for the past 50 years, but
there’s no denying that the amount of
money and time that goes in to get the
same gains that have been seen over the
last 20 years is now more and more
exponentially higher.

Like the amount of money that was
spent on developing extreme ultraviolet
lithography [a new process that enables
even smaller transistors] at TSMC, and
they’re still getting only a 50% yield or
something on that process, they’re really
struggling with it; it’s not at all like an old
node, like the one we use.

And you can go up: all our chips are
really flat. All the complexity is in this very
thin layer. But if you go up, you have a real
problem with getting power in and
heat out.

Processors are already constricted with
power in and heat out. If you build it 3D,
you’re gonna get huge processing power,
but it’s not actually possible to do because
now you’ve got terawatts of power to get
out of there.

Above
This particular
design runs a
clock – and that’s it.
These designs are
application-specific

Below
Matt’s helped
students,
professionals and
curious tech geeks
design their own chips

Matt

				 Venn
Matt Venn

INTERVIEW

48

Above
Matt’s been learning
and teaching ASIC
for around three
years now, and has
the hat to prove it

Matt

				 Venn
49

LENS

like an adder or a flip-flop or an AND gate
or an XOR gate or combinations of gates
that are useful for things.

When you’re designing digital circuits,
it’s still possible to grab loads of these and
then wire them all together. But it would
be more normal for a person to say, ‘I want
a register with 10 bits of information in it,
and then another register with 20 bits of
information in it, and I want to add them
together, take the output and put it back
into the first register’. And you would do
that by writing in what’s called a hardware
description language, where you describe
the hardware you want in words rather
than by drawing pictures. So it’s a level
higher in abstraction.

HS This may be a silly question, but once
you’ve got the chip that you’ve designed,
you can’t just then run Python on it
can you?

MV Python is quite a long way away from
the metal.

Yeah. The whole world of the C
programming language is a good way to
explain it. With C, you’ve got a linker, and a
memory map, and some assembly, and
then a compiler – all those things come
together so that you could write some
assembly. And it would run on that
processor, because it would know what the
registers are, what the capabilities of the
CPU are, what the memory map is, where
the reset address is, and all this kind of
stuff, and then you might be able to make
a binary that you could load into the CPU
and it would execute it. And then, once
you have that, then you write C with it, and
once you have C, you write Python with it.

HS A lot of sensor modules that home
makers use are affordable now because
they’re a few generations behind the
cutting edge. Is that the case with what
you’re doing?

MV All the chips I design are using what’s
called a process development kit [PDK],
which is like a secret database that the
factory creates when they set up
their tools.

You can make other more exotic types of
transistors, but you can’t keep on shrinking
them. Because we’re now at the atomic
limits. So people are looking around for
other ways that are more cost-effective to
get more power for your dollar. And one
way that you can do that is with
specialisation. For example, YouTube has
racks of ASICs that just compress video.
It’s worth their while making a custom
chip just for that one thing.

A general-purpose computer is general
purpose, but that means it’s pretty poor at
everything basically. That’s why you have
graphics cards: because we all depend on
graphics, and people like playing 3D games
or using 3D for CAD or for chip design or
whatever. And that needs acceleration; the
CPU can’t do it. So you have a separate
accelerator. Everyone needs a big screen;
we’re all visually focused. So it makes
sense that one of the first things that was
accelerated was screens and graphics. But
if you’re doing a lot of encryption or a lot of
video encoding or a lot of simulation of
climate change or training HIs or whatever,
then it makes no sense to use a general-
purpose computer, because you can get
ten times the performance with
something specialist.

HS That feels like going backwards. It
feels like going back towards the days of
Alan Turing building a huge machine to do
one thing.

MV Back then, general-purpose computing
was a massive breakthrough because you
could build this one thing and then do
everything with it. But we’ve lived with
general-purpose computing for like 50 years
now. We’re kind of at the limits of that. And
people still want more performance.

You could also write your computer
programs more efficiently: a tonne of web
apps and software as a service apps are
written in JavaScript or whatever, and
that’s running in the browser, which is
running on the OS, which is running on an
abstraction layer, which is running on a
kernel, which is running on the CPU. You
can see how you lose efficiency at each of
those levels. So you can write closer to the

metal – which is harder and takes longer
time and takes longer to develop, but you’ll
get more performance – or you actually
build different metal.

HS It’s not the same thing, but Raspberry
Pi is at the stage where they’re designing
the chip around the board, rather than
designing the board around a chip.

MV In a way, what Raspberry Pi is doing
now is chiplet design, but instead of using
a silicon interposer they’re using a PCB. It’s
very clever, because they’re able to take
advantage of like 20 nanometres or lower
for their core from Broadcom, an off-the-
shelf component made in huge volumes,
and then the thing that makes the
Raspberry Pi special and easy to use, and
where all the documentation is built
around, and all the examples and all that
glorious ecosystem that is the killer app for
Raspberry Pi – that’s in your own custom
hardware, which can be at a bigger,
cheaper process, and it can be tiny, and
you can get tens of thousands from a
wafer. It makes a lot of sense.

HS To my uneducated eye, the process of
making an ASIC looks a little like doing a
PCB design, where you do a digital design
and then it goes through an additional
step to translate that into physical reality.
Is that right?

MV That’s maybe half the story: you can
roughly divide chip design into two
threads. One is digital design for building a
CPU or a logic chip or something like that.
And the other side is things that interface
with the real world, like analogue-to-digital
converters, or radios or PWM drivers or
GPIO pins, or temperature sensors.

All of that stuff is more broadly divided
into analogue and digital. Analogue looks
quite like PCB design, and it’s still a very
manual process with people drawing
out shapes.

The digital side of things is one layer
more abstracted. So we have a library of
what’s called standard cells. And they do
defined logic functions that have already
been designed by somebody else usually,

Matt

				 Venn
Matt Venn

INTERVIEW

50

MV Exactly. Your design is one of these
little designs, and then that whole thing is
inside this square of silicon, along with
another 300 designs, and then you use this
bank of switches on this PCB here to set
which design you want to be active.

HS You mentioned TSMC before. Is that
where the chips get made?

MV We don’t send them to TSMC, because
we don’t have the volume. They’re only
really interested in big deals. Or local
education – if you’re in Taiwan and a
you’re a student, you get free tapeouts.
It’s normal for people to do their first
tapeout at PhD level. And one thing I’m
really working on with my projects is that

every undergraduate studying
microelectronics should do a
tapeout. We’re also working with
high schools.

You know when the UK adopted
the stance that everyone has to
learn how to program a computer?
There is some sense in that, but not
everyone needs to know how to
program a computer, and forcing
people to do it if they don’t want to
is maybe counterproductive. But
making it available so you can

choose to do it if you’re interested in it, I
definitely support that. So it could be
nothing like that: if you’re a motivated high
school student, your final project could be
to do a tapeout and make your own chip.
Why not?

HS TSMC is in Taiwan, which is only a hop
and a skip from China. Have you found that
there’s been an increase in interest since
recent geopolitical events made Taiwan’s
proximity to China more obvious?

MV That, and the supply chain shocks
were the reason for the EU and the US
Chips Act. And that $50 billion each is being
invested in lots of different places; probably
90% of it will be spent on equipment or
buildings. But 10% of a billion is still a lot of
money. And they want to build centres of
excellence for training around Europe. And
that’s happening in the US as well.

You’ve got to remember that these
factories cost billions of dollars. I think the
latest TSMC one for their N3 process, one
of the very new latest ones, cost $18 billion
for the factory. But at the other end of the
spectrum, you’re still talking of hundreds
of millions, because you still need a very
clean room because even one speck of
dust is going to ruin a chip (because
specks of dust are way bigger than the
features that you’re making). And all of the
equipment is really expensive. I visited a
factory called IHP In Germany, they have a
130-nanometre process. And the
lithography machine that flashes a light
through a pattern onto this sensitised
wafer was, I think, between $10 and $20
million for that one machine.

That’s one of the more expensive
machines, but you need like eight
or ten machines minimum to run a
chip line, as well as the clean room
and maybe 50 people who are all
specialised, even for an old process
like Sky130. And because it’s so
much bigger, it’s only 130
nanometres, that means that when
you’re making your masks that you
shine the light through to do the
features on the very smallest
features have like the minimum
thickness is 130 nanometres on a
130-nanometre process.

A 3-nanometre process doesn’t have
anything on it that’s 3 nanometres. It’s
confusing, but in the old days, the numbers
still had a relation to the product. So with a
130-nanometre process, that means you
need to make wires that are 130
nanometres. So you send this chunk of
glass off with a chromium top to another
factory that will just put the features in.
And they might use something like an
electron beam, or a focused ion beam to
cut away the part of this thin sheet of
chromium on the glass. That’s usually four
times bigger than the features that you
want. So that means you’re cutting lines
that are maybe 600 nanometres, so half a
micron, so a bit more imaginable. And then
through the optics system, when you flush
that light, it goes down four times smaller
and exposes onto the wafer.

These chips are made up of maybe 100
layers, which means you need 100 masks,
but only the ones right at the bottom are
the ones with the very fine detail; the ones
at the top are made on a much bigger scale,
so those are cheaper to make because you
have less detail on them and you can use
older machines.

So all those 100 pieces of glass with 100
patterns on to make your chip on Sky130
would cost $200,000. But once you have
them in the factory, and it’s all going in its
automatic process, you can be stamping
out wafers with 2–3000 chips on it, and
they’re just coming out of the end of the
line, boom, boom, boom, boom, so that’s
where you get the volume, that’s where you
get the things that are actually affordable

to buy at the end, because you’ve got that
mass production process.

If you’re talking about the masks that
were used for the RP1, they probably cost a
million dollars for the mask set. So that’s
another reason why it’s more accessible to
use an older process, because the masks
are cheaper.

And then the other thing [that keeps the
price down] is that on each wafer there’s a
square that has about 40 little smaller
squares, and that gets repeated over the
whole wafer.

So then those 40 people split the 200
grand between them, they only pay ten
grand each. And then what I do is I split
that one chip into another 400. And that’s
why I can charge you $100 to do a tapeout.

HS So when you get the thing back that
I’ve paid $100 for, it’s not just my design
that I’m getting?

”

” Every
undergraduate

studying
microelectronics

should do a
 tapeout

Matt

				 Venn
51

LENS

I’m collaborating with universities in
Europe and in the States with training and
with the TinyTapeout project to help
people do the practical side of things. I
mean, I’m a very practical learner; I
wouldn’t have made a chip design course if
it wasn’t possible to actually end up with a
chip in your hand. And for other people
who learn in a similar way, or who also
value the importance of making physical
things, I think it’s important.

It’s happening, definitely. And some
small amount of money is being invested
in the open source side of things as a kind
of a side bet maybe. The big boys, like
Synopsys, Cadence, and Siemens, they
dominate the chip design world for good
reason, because between the three of them,
they’ve probably invested a trillion dollars
in R&D over the last 40 years.

So of course, they’re way ahead of any
open source effort. But open source makes
perfect sense for training and education,
because a licence for one of these tools
costs $100,000 – how can you afford to let
your students use it? Universities make
deals with these big companies, so they get
it cheap, but then only the big fancy
universities get to benefit from that, and a
small university in Vietnam or Ecuador,
they can’t get access to the tools and they
can’t teach chip design. Open-source tools
makes a tonne of sense.

You see people doing things that we’ve
never done before with PCBs. People using
PCBs for things that they were never
designed for, like mechanical enclosures, or
for decoration, or all kinds of stuff, and
some of that does feed back into industry. I
think that changing the mentality of chip
design from being a massive endeavour
with hundreds of people and tens of
millions of dollars, and you can’t make any
mistakes. That working environment has
an effect on people. And it limits creativity
and out-of-the-box thinking, because you’re
too scared to make a mistake.

So having very cheap access to silicon
and experimental tools that you can even
write yourself. We have designs that are
now coming from people’s home-designed
tools. Who knows where the next chip
design startup is going to come from?

Above
The goal of Zero
to ASIC is to open
up a new frontier
for open source
hardware

Below
When you see them
up close, computer
chips can be
beautiful things

Buy online: magpi.cc/store

	 QuickStart guide to setting up
your Raspberry Pi computer

	 Updated with Raspberry Pi Pico
and all the latest kit

	 The very best projects built by
your Raspberry Pi community

	 Discover incredible kit and
tutorials for your projects

200 PAGES OF RASPBERRY PI

http://magpi.cc/store

Start your journey to craftsmanship
with these essential skills

SCHOOL OF
MAKING

PG54

54 Pico Modular

HACK MAKE BUILD CREATE
Improve your skills, learn something new, or just have fun
tinkering – we hope you enjoy these hand-picked projects

FORGE
60

PG

Automate your drinking

ROBOT
BARTENDER

70
PG

PHONE
MAKEOVER
Keep an old phone going

78
PG

PCB CHASSIS
Build your robot out of circuit board

66
PG

Fill your moulds safely
ECO RESIN

TUTORIAL

54

Pico modular

modular synth isn’t a singular
thing: it’s more a concept. It’s
an electronic instrument that’s
built up out of discrete parts (or
modules) that can plug together
and communicate using a standard

protocol. Typically, the standard protocol is an
analogue voltage known as control voltage (or
CV), and is transferred around using jack-to-jack
cables known as ‘patch cables’. Using these, a set
of modules can be combined in different ways to
create different sounds. Modules usually come from
many different suppliers, and there’s a huge range
to choose from, meaning that there is no standard
modular setup (though there are certainly some
common parts that many modular synths have).

They often (but by no means always) take input
from other systems such as MIDI keyboards.

Modular synths are a fascinating and adaptable
way of building electronic instruments. However,
they are big and expensive.

Part of the reason that analogue synths are so
big and expensive is that they tend to be focused
on high quality. They’re robustly made and produce
high-quality sounds. This is a good thing, but it does
mean that it can be an expensive world that’s hard
to get into.

We’ve decided to go back to basics and reimagine
what a modular synth could look like if it were created
in 2023. We want to keep the intuitive voltage-based
system, but scale it back so it’s easy to work with 3 V
microcontrollers, specifically Raspberry Pi Pico. In this
series, we’ll build it up module by module until we’ve
got a system that we’re happy with.

This is not a particularly efficient way of building
a system. Pico can do many more of the tasks than
we’re giving it. Also, if you are going to transfer data
between microcontrollers, using analogue is, at best,
antiquated. There are plenty of much more modern
digital protocols that we could reach for. However,
music has never been about practicalities. It’s about
aesthetics and how an instrument makes you feel.

By making the communication analogue, we’re
leaving the door open to communicating with
other modular synth hardware. Our simple setup
isn’t designed to work this way at the moment,
but it’s something that we’ll tackle in the future.
Analogue voltage communication is also intuitive to
understand, and we might look to add some purely
analogue modules in the future.

How practical is a cheap, hackable modular synthesizer?

Pico modular

A

WHY PICO?
There are a lot of different microcontrollers we could
have chosen for this, and they have different pros
and cons.

Raspberry Pico has three analogue inputs. This isn’t as
many as some, but it’s a few.

With Pico, it’s easy to control hardware with accurate
timing across a range of interfaces. It’s powerful
enough for our uses and, significantly, it’s cheap
enough that we can throw a lot of them at the problem
without increasing the cost too much.

It’s the price and feature set of Pico that really makes
this project possible in its current form. Throwing
this number of almost any other moderately powerful
microcontrollers at the project would mean that it got
too expensive to work.

01

Ben Everard

Ben’s house is slowly
being taken over by 3D
printers. He plans to
solve this by printing an
extension, once he gets
enough printers.

55

FORGE

THE ROAD AHEAD
We have a target of building a playable modular
system for under £50, and a more interesting
system for around £100. We will probably create
more modules than this, but it’s up to the reader
which ones they want to create. To put it another
way, we want to make a modular synth for less than
the price of a single typical module. That is ambitious
but not impossible (depending on what you want to
call a playable synth).

To do this, we need to throw away lots of things
that are good practice, but not 100% necessary.
This includes protections for the inputs, and various
bits to filter and improve the sound, and the range
of supported voltages. We will, in a future article,
look at the impact of adding these back in to make
our synth more compatible with a more traditional
synth, and look at what the pay-off is in terms of
price and quality.

Modular synths are usually (but not always) built
around the Eurorack standard for physical setup and
power. We’re going to abandon this as it’s too big
and expensive for our needs. For physical setup,
we’re going to work with 3D-printed enclosures

(though you could easily replicate them with hand
tools if you don’t have access to a 3D printer). For
power, we’re going to start with a standard 0–5 V
range for powering the modules, and 0–3.3 V for
analogue communication.

ANALOGUE IMPERFECTIONS
There are a few ways of creating an analogue output
with a Pico. By far the most common is to use
pulse-width modulation (or PWM). This flicks a digital
output on and off very quickly so that it averages
out to some point in the middle. By controlling how
long it spends flicking up and down, you can control
where in the middle it averages out. This works well

Left
The easiest way of
experimenting with
Pico modular is on
a breadboard

Below
You can make
the circuit (semi-)
permanent by gluing
the components
upside down and
soldering to the legs.
This technique is
known as ‘dead bug’
because the pins in
the air look like a
dead bug’s legs

We want to make a modular
synth for less than the

price of a single
typical module

”
”

TUTORIAL

56

Pico modular

for dimming LEDs, and can even create quality audio.
However, it doesn’t work for our purposes because
you can’t reliably read it with another microcontroller.

The simplest way of getting true analogue out
from a microcontroller is to use an R-2R resistor
ladder. This is a combination of resistors (some
of which have twice the resistance of the others,
hence the name). It’s cheap and easy to use, but
any inconsistencies in the resistors add up. As such,
it’s hard to get more than seven or eight bits of
resolution. This is fine for some purposes – you can
create a reasonably accurate waveform from these.
However, if you’re using a voltage to set the pitch,
this lacks the resolution needed, particularly for pitch
bends and finer control.

The most reliable way to set a voltage is with a
dedicated digital-to-analogue converter (DAC). These
allow us to specify the voltage we want. However,
they are the most expensive option. They are also
slightly harder to control.

ASSEMBLY
When a project is made up of lots of little parts like this,
the cost of any one of those little parts can have a big
impact on the final price. One question we’ve wrestled
with over this is how to hold the components together.
There aren’t many of them, and we could easily do it
on stripboard or protoboard. We could even design
some PCBs to hold everything together. However, either
of these options would add a sizeable chunk onto the
final cost.

We’ll look at the cost of these options in a future article,
and once you’ve got a setup that you like, it could well
be worth doing. However, in the interests of making a
cheap, hackable, accessible musical instrument, we’re
going to go with ‘dead bug’ style circuits. With this, the
components are glued upside down and connections
are soldered wires. It’s a bit messy, but fairly secure
and easy to modify.

Above
We’re experimenting
with 3D-printed cases
– in this iteration, the
text is too small to
print cleanly. Once we
have a version that
we’re starting to be
happy with, we’ll add
them to the repository

57

FORGE

We’ll look at dedicated DACs in the future, but for
this article, we’ll use a simple resistor ladder.

THE FIRST MODULE
Music all starts with oscillations. Sound in the air is a
compression wave, and this is encoded electronically
as a voltage varying over time.

Modular synths control sound using control
voltage. This is an analogue signal that defines the
sound, with one volt range corresponding to one
octave range of audio.

The link between control voltage and sound
is a voltage-controlled oscillator (VCO). This
reads in a voltage and outputs a sound-wave at a
particular frequency.

Our first module will then be a VCO. The hardware
for this is a Pico (a Pico W should also work, though
we don’t use the wireless hardware) and an R-2R
resistor ladder. You can either make this resistor
ladder out of resistors, or buy one as a dedicated
bit of hardware (we used a 4610X-R2R-103LF from
Bourns). The operation is the same – if you already
have 26 resistors of the same value, it’s probably

worth using them, otherwise, it’s easier and cheaper
to use dedicated hardware. That said, we’d caution
against buying too much hardware now as you might
find it easier and cheaper to wait until we’ve got the
bits for a playable synth.

To wire it up, you just have to connect ground,
then pins 0 to 7 from Pico to the R-2R ladder, and
the output from the ladder is the module’s output.

The output of this is an audio signal in the 0–3.3 V
range. It can’t source enough current to power more
than a small speaker, yet it’s too much voltage for
line-level inputs. For the purposes of testing it out,
you can clip it onto a pair of headphones. We’ll look
at creating a more standard output in the future.

In this case, it can just be connected to a jumper
wire and crocodile clips to the top ring of your
headphone’s jack (and the bottom of the headphone
jack can go to ground).

The input for the VCO is Pico pin 26. For now, you
can attach this to ground.

SOFTWARE SETUP
We want our modular synth to be hackable, and we
also want it to perform as well as it possibly can for
the given hardware. After going through the various
options (including CircuitPython, MicroPython, and
Arduino), we’ve decided that the best option is
to use the Pico SDK and program it directly in C.
This is a little more complex to get started in, but
it does give us a lot of flexibility in how we use the
hardware – flexibility that we’ll be taking advantage
of in future modules.

You can either make this
resistor ladder out of

resistors, or buy one as a
dedicated bit of hardware

”
”

Left
Multiple modules will
connect together like
a jigsaw, letting you
create a synth out of
an arbitrarily large
number of modules

TUTORIAL

58

Pico modular

If you don’t want to get your hands dirty with
code, we’ll also provide UF2 files that you can
upload directly to Pico.

All the assets for this project can be found at
github.com/benevpi/PicoModular. In the binaries
folder, you’ll find a UF2 file for PicoVCO_R2R. Hold
down the Boot button on Pico and then plug it in via
USB (unplug first if necessary), and you should see a
USB drive called RP2 appear. Drag and drop the UF2
file onto this drive, and it will upload the project onto
your Pico and (if the hardware is all attached) you
should hear a note on your headphones.

The code that powers our VCO is:

#include <stdio.h>
#include <math.h>

#include "pico/stdlib.h"
#include "pico/multicore.h"
#include "hardware/adc.h"
#include "eightbit_r2r_dac_simple.pio.h"
#include "waves.h"

#define WAVESIZE 2000
#define PEAK 255
#define START_PIN 0
#define LOWEST_FREQ 100
#define CYCLES_PER_PIO_LOOP 3
#define CPUFREQ 130000000

int triangle_wave[WAVESIZE];
PIO pio;
uint sm;

float calc_clkdiv(float frequency, int length) {

	 return (CPUFREQ / (frequency*CYCLES_PER_
PIO_LOOP*length));

}

void core1_loop() {
	 while(true) {
		 for(int i=0; i<WAVESIZE;i++){
			 pio_sm_put_
blocking(pio, sm, triangle_wave[i]);
		 }
	 }
}

void main () {
	 stdio_init_all();
	
	 adc_init();
	 adc_gpio_init(26);
	 adc_select_input(0);
	 const float conversion_factor = 3.3f / (1
<< 12);
	
	 generate_triange(triangle_wave, WAVESIZE,
PEAK);
	
	 pio = pio0;
	 uint offset = pio_add_program(pio,
&eightbit_r2r_dac_simple_program);
	 sm = pio_claim_unused_sm(pio, true);
	
	 float init_clkdiv = calc_clkdiv(440,
WAVESIZE);
	
	 eightbit_r2r_dac_simple_init(pio, sm,
offset, START_PIN, init_clkdiv);
	
	 multicore_launch_core1(core1_loop);
	
	 float divider;
	 float freq;
	 while(true) {
		 uint16_t result = adc_read();
		 freq = LOWEST_FREQ * pow(2,
result*conversion_factor);
		 divider = calc_clkdiv(freq,
WAVESIZE);
		 pio_sm_set_clkdiv(pio, sm,
divider);
		
	 }

}

Right
We’re still
experimenting with
the best way of
connecting inputs and
outputs together. This
spring arrangement
will be familiar to
anyone who learned
electronics in the
early 1990s

http://github.com/benevpi/PicoModular

59

FORGE

As you can see, this uses a simple PIO program to
continually put data on the GPIO pins. We could do
this directly from C, but PIO has very accurate timing,
so it becomes simple to adjust the pitch of the note
by adjusting the frequency of the PIO state machine
(which you can see happening in the main loop).

The PIO program is:

loop:
	 out pins, 8
	 pull ; could do autopull, but this feels
less error prone if changing the size
	 jmp loop

This could be more concise, but it’s helpful to have
more instructions because there’s a limit to how
much we can slow down the state machine, and
having three instructions per loop gives us a better
range of frequencies.

We’re also creating a library of different
waveforms. At the moment, this just has a single
function, generate_triangle(), which unsurprisingly
generates a triangle wave. In the future, we’re going
to expand this to more waves. The program is just
putting values from an array onto pins, so there are
no limits on the waveforms that it can produce.

This just outputs a triangle wave, but there’s
nothing in the hardware that limits the wave shapes
that it can output, and we’ll investigate more in the
future. In this series, we’re going to focus on getting
a playable instrument, then look to add complexities
and intricacies later. Since it’s designed to be
hackable, we shouldn’t have a problem with that.

We’ve only built one type of module, but we can
already start to look at how to generate sound with
it. We can use one of these as a low-frequency
oscillator (LFO). LFOs output a waveform that’s
below audio range, and are used to control things
rather than play sound directly. In this case, it means
we can use the output of the LFO as the input to the
VCO to create a warbling sound.

We’ve also created a UF2 for a voltage-controlled
LFO. This is almost identical to the VCO code, but

with a couple of tweaks to make it output a much
lower-frequency wave. If you take a second Pico and
wire it up in exactly the same way as the VCO Pico,
but connect the output from the R-2R ladder to the
analogue input of the VCO Pico, then you’ll hear the
frequency of the VCO change up and down with the
wave from the LFO. It’s not the most complex bit
of sound synthesis, but hopefully it will give a little
glimpse of what our Pico modular system will be
able to do.

We honestly don’t know how far this project
will go. It’s an experiment in cost engineering and
pushing the analogue capabilities of fundamentally
digital devices to their limits. We’re hoping to end
with something that’s enjoyable to play, and helps
you learn about music and the hardware behind it.

WHAT DO YOU
WANT TO SEE?

We have a plan for how we want to build our synth,
but all plans are flexible. We’d love to hear what you’d
like to see in a Pico modular synth. Are there specific
modules you’d like to build? Specific bits of hardware
you’d like to interface with?

Let us know. We can’t promise to accommodate
everything. We can’t even promise that it’s possible, but
we’d love to hear about it. Email your ideas to
ben.everard@raspberrypi.com and we will take them
into consideration.

We’ve only built one type of
module, but we can already

start to look at how to
generate sound with it

”
”

Above
To get an analogue
output, connect the
low end of the R-2R
ladder to ground, then
GPIO 0 to 7 in order,
and then the output is
on the final end

mailto:ben.everard@raspberrypi.com

TUTORIAL

60

reBartender V0.1

02 Attach pipe holder
For the pipes attached to the pumps, the

input end goes to a jug which will be filled with
the various cocktail ingredients, and the output
end of each silicon pipe goes into a metal straw.
To hold the straws in a fixed position so that
patrons can easily fill their glasses, a pipe holder is
3D-printed and attached to the frame.

Affix the short end to the frame with nuts and
bolts (Figure 2), and then insert the straws into
the pipes and through the holes on the 3D print.

03 Wiring it up
Figure 3 shows the wiring diagram for

the setup. The DM Terminal is on the rear of
reTerminal DM and has four opto-isolated DO
(digital output) interfaces that can directly
control a load of 500 mA. In this case, we can
connected four peristaltic pumps with wiring to
the reTerminal DM 20-pin terminal, where each
individual pump can be controlled by the DO pins.
The pumps used are driven by a 12 V DC motor, and
the maximum current they draw is around 200mA.

Get yourself a Raspberry Pi-powered drinks dispenser with
this cool setup by Seeed Studio and their reTerminal

D uring the celebration of the Dragon Boat
Festival at Seeed Studio, a booth was set
up to serve drinks with an automated

cocktail machine and named reBartender V0.1.
The prefix ‘re-’ is commonly used to mean

‘again’, and Seeed Studio created a product line
called reThings to evoke ‘redefine’, and includes
products like reTerminal (which we reviewed
in The MagPi 122 (magpi.cc/122) and the latest
reTerminal DM (Device Master). They’re both
powered by Raspberry Pi Compute Module 4 and
have a lot of industrial interfaces – perfect for
attaching to pumps, pipes, and more to help serve
some cocktails. Let’s get mixing.

01 Cut the aluminium
The aluminium frame needs to be cut into

2 × 15 mm lengths for feet, 2 × 25 mm for the legs,
and a 70 mm piece for holding reTerminal DM
with DIN rail. The peristaltic pumps are just held
on by cable ties.

See Figure 1 for the basic build – the feet are
laid lengthways on the desk, and right-angle
brackets are used to attach the legs, which are
orientated upright. The long piece bridges the
two, again attached by the brackets, and that’s
where we’ll attach reTerminal later. Be careful
using power tools for this – not only are they
dangerous, but cut metal can be very sharp.

Peter
Pan

An application
engineer at Seeed
Studio, he’s also a
maker in his spare
time, so he fits right
in with the maker
atmosphere of
Seeed Studio.

seeedstudio.com

M
A

K
ER

reBartender V0.1

You’ll Need

> � �reTerminal
DM magpi.cc/
reterminaldm

> � �150 mm of 20 mm ×
20 mm aluminium
frame

> � �4 × right-angle
brackets to fit

> � �Nuts and bolts

> � �3D-printed parts

> � �4 × 12 V DC
peristaltic pumps

> � �12 V power supply

> � �Various jars, pipes,
metal straws, and
drinks to fit

> � �STL and code files: 	
magpi.cc/rebtgit

 �Affix the short end
to the frame with
nuts and bolts

	� Figure 1: The basic build of the frame, once done

	� Figure 2: Affix the straw holder onto the aluminium frame

http://magpi.cc/122
http://seeedstudio.com
http://magpi.cc/reterminaldm
http://magpi.cc/reterminaldm
http://magpi.cc/rebtgit

61

FORGE

06 Flow control
Let’s create the main algorithm. We can use

the ‘trigger node’ to send messages with a short
delay - the core algorithm behind the ingredient
volume control. We can use ‘change node’ to
send the stop signal after the delay period when
chaining together more pumps.

In the settings for the trigger node, select ‘true’
for Send. Select ‘wait for’ for then and set the
waiting period. This version uses 1000 milliseconds
as it’s about a 400 millisecond delay with the pump
used to fill up a single shot glass. Set ‘then send’ to

04 Preparing to code
We’re using Node-RED to create a ‘proper

cocktail mixing flow control algorithm’, which is
definitely real and important computer science,
along with a nice UI for people to interact with.

The 20-pin terminal that we’re using does
correspond to specific GPIO pins on Raspberry
Pi. You can find out more details on the entire
terminal here: magpi.cc/rtdmpins. For our uses,
the DO pins are labelled as such:

DO1 - GPIO21
DO2 - GPIO25
DO3 - GPIO26
DO4 – GPIO6

The fifth pin that we’ve plugged into is a ground
pin for the DO pins.

05 Setting a pin in Node-RED
From the Raspberry Pi nodes, select rpi‑gpio

and add it to the flow. Double-click it to change the
settings: pin needs to be 18 – GPIO24, BCM GPIO
should be 24, type is Digital output, initialise pin
state should be ticked, and initial level of pin should
be low (0). You can double-check the settings next
to Figure 4 and, once you’re happy, click Done.
Repeat this for GPIO25, 26, and 06.

	� Figure 3: The wiring is fairly simple. Make sure the ground
for the pump power is connected to reTerminal

Warning!
Power tool

safety

This project uses power
tools. Be careful and

wear safety equipment.

magpi.cc/powertools

Place a glass under the four
straws, and they’ll dispense
the drink you ordered

Select your preferred
drink from the
touchscreen menu

http://magpi.cc/rtdmpins
http://magpi.cc/powertools

TUTORIAL

62

reBartender V0.1

08 Record button presses
Add a csv node to the flow and open up

the settings. For this, we want the Columns to be
button, button_num, and comma as the Separator.
In the input section, we want ‘parse numerical
values’ ticked. Click Done when you’re happy.

Now we need to write to the file. Add a write
file node and set the file name to a path called
test.csv. The Action should be append to file and
then ‘Add newline (\n) to each payload?’ should be
ticked. You want to now link the output of the csv
node to the input of the write file node.

09 Main flow
With the nodes set up, we can start creating

recipes by linking up the nodes! Check Figure 6
for an example recipe, in this case a vodka and
soda. With several recipes added to the flow, you’ll
get a flow like Figure 7. The recipes use sparkling
water (pump one), vodka (pump two), orange juice
(pump three), and mint syrup (pump four). Here
are the original recipes:

Recipe 1 (Vodka and Soda): Sparkling water ×
1000 ms, vodka × 400 ms
Recipe 2 (Screwdriver): Vodka × 400 ms, orange
juice × 800 ms
Recipe 3 (Vodka Mojito): Sparkling water ×
800 ms, vodka × 200ms, mint syrup × 400ms
Recipe 4 (Orange Crush): Sparkling water ×
800ms, vodka × 200 ms, orange juice × 400 ms
Recipe 5 (Vodka Collins): Vodka × 200 ms, orange
juice × 800 ms, mint syrup × 400 ms
Recipe 6: Sparkling water × 1000 ms, orange
juice × 400 ms

‘true’ for triggering next pump(/ingredient) within
the same recipe. Tick ‘send second message to
separate output’ and then hit Done.

For the change node, you’ll need to open the
properties and choose ‘Set’, ‘msg.payload’,
and then to the value is ‘false’. This allows one
ingredient to be dispensed at a time.

07 Button nodes
Add a button node and open the properties.

Set the group to ‘[HOME] Default’, set the size to
6 × 5, and scroll down to ‘When clicked, send’ –
set the payload to 1 which will be the number the
button sends when pressed. Click Done.

We need to let Node-RED know we’re using the
UI to control stuff. Add a ui control node, open the
settings and select JSON (or {}) as Send and then
enter {“tab”:“Overlay”}. Choose ‘wait for’ from
the then menu, and enter 10000 milliseconds.

‘Then send’ should be JSON/{} again and this
time enter {“tab”:“HOME”}. You can check what
you’ve done against Figure 5, and then click Done.
Finally, add a ui control node, and set its output to
‘Change tab or group events only’.

Top Tip
Cocktail trial
and error

Got a favourite
cocktail? It
usually has a very
specific mixture of
spirits and mixers,
so getting the
time delay correct
for the right
amounts will take
some tweaking.

	� Figure 4: How to
set up the GPIO
pins in Node-RED

	� Figure 5: The settings for the trigger node

THE MAGPI

This tutorial
is from in The
MagPi, the official
Raspberry Pi
magazine. Each
issue includes a
huge variety of
projects, tutorials,
tips and tricks to
help you get the
most out of your
Raspberry Pi.
Find out more at
magpi.cc

63

FORGE

11 UI code
With that all done, you can add a template

node to the flow and add CSS styling, linking the
node id of the buttons to the images, and including
the background. You can find the code used in
this project at magpi.cc/rebtgit, as well as some
example images if you’re having trouble finding
some yourself.

12 Automated sip
You’re done! Fill up the jugs with the

desired ingredients, and get ready for your
automated bartender to serve you some drinks.
Remember, drink responsibly – that way you can
keep the containers filled up without any spills
or accidents.

Recipe 7: Sparkling water × 1000 ms, mint
syrup × 400 ms
Recipe 8: Sparkling water × 1000ms, orange juice
200 ms, mint syrup × 200 ms

10 UI folders
To make a nice-looking UI, we can set the

buttons and other parts of the interface to use
images. This is quite simple to do – first, open the
terminal on Raspberry Pi and get to the Node-RED
settings folder with:

cd ~/.node-red

Then open the settings.js file with:

nano settings.js

There will be the line //httpStatic: '/home/pi/
node-red-static/', //single static source.
Remove the // at the start to uncomment the line
and save the file. Finally, use cd ~ to head to the
home folder and use:

mkdir node-red-static

Put the images for the drink buttons and
background you’d like to use in the folder, and
give them a simple name – e.g. button1, button2,
background, etc.

	� Figure 6: An
example recipe flow

	� Figure 7: Full flow for
eight buttons using
four ingredients

 �We can set the buttons
and other parts of the
interface to use images

http://magpi.cc/rebtgit

RASPBERRY PI 5
Priority Boarding

We’ve reserved Raspberry Pi 5 boards
for HackSpace magazine subscribers

Want to get Raspberry Pi 5 sent to you
right now, without waiting for stock?
With Priority Boarding, you can order
your Raspberry Pi 5 (4GB or 8GB) and it’ll
be sent out right away. Raspberry Pi has
set aside thousands of Raspberry Pi 5
computers for The MagPi and HackSpace
magazine print subscribers to buy.
Enough to guarantee every subscriber
can get one without going out of stock.

How it works!
If you take out a print subscription to
HackSpace magazine or The MagPi, we’ll
send you a unique code in the next few
days. Along with the code, you’ll get details
of how to use it through our partners (Pi
Shop in USA and Canada and the Pi Hut
everywhere else).

Get started
New subscribers to HackSpace mag will get
a code when they sign up. So don’t delay;
take out a subscription today (hsmag.
cc/subscribe). You’ll be able to buy your
Raspberry Pi 5 first and get a magazine
packed full of incredible maker tutorials,
projects, and reviews.

GET YOUR
RASPBERRY PI 5

http://hsmag.cc/subscribe
http://hsmag.cc/subscribe

Terms & Conditions Priority Boarding codes will be emailed to everybody with a print subscription to The MagPi or HackSpace magazine. People who subscribe to both magazines (print only) will receive two codes. Priority boarding does not apply to people
with App Store, Google Play, ZINIO, PDF contributions, or other paid-for subscriptions. Each code will entitle you to purchase 1 × Raspberry Pi 5 model (4GB or 8GB) for the standard retail price and delivery. Multiple codes need to be used individually. This is
a limited offer and is subject to change or withdrawal at any time.

Find out more at

hsmag.cc/priorityboarding

http://hsmag.cc/priorityboarding

TUTORIAL

66

Creating with eco resin

co resin is arguably the new kid on
the block in terms of resins, with
long-established epoxy resins having
been popular for some time in the
world of crafting. In fact, we’ve even
seen makers embedding LED lights

in the substance (hsmag.cc/LEDsInResin), to
great effect.

The difference with eco resin, however, is that
it’s just a little kinder to both the user and the
environment while still being strong and durable, and
it is gaining traction as a go-to compound for makers

of all abilities. It also gives a very different finished
effect from epoxy resin, with a far more ceramic/
stoneware effect, and you can incorporate glossy,
matt, or marbled finishes. So, if you want to bypass
using more toxic substances in your making, read on
for some artful and carefully cured inspiration as, in
this tutorial, we are going to make some eco resin
coasters, ever-useful little mats for your beverages to
stand on.

STEP 1 MEASURE METICULOUSLY & MIX
With your work surface prepared and your mould
chosen, if you want to line the bottom of the mould
with some form of decoration, e.g. silver leaf, beads,
shells and so on, now is the time to do that before
you start mixing your resin. It’s really important,
when casting eco resin items, that you use scales
to accurately measure out the amounts of resin
casting compound and water required. Otherwise,
your mixture won’t cure properly and will be an
expensive waste of money, mixture, and time. Clear
instructions on how much you need to weigh out per
100g are given on the pack – ours required 35g of
water for every 100g of resin compound. In terms of
how you work out exactly how much resin you need
for a specific mould, weigh your mould empty, fill it
with water, and then weigh it again. The difference
between the two weights is the volume, and you can
use this to figure out how much water and compound
is required.

Once you have your powder and water together in
a mixing cup, ensure you mix until it is free of lumps
and has a creamy, batter-like consistency. You have
10–15 minutes to work the mixture, so have some
colours ready to add.

A safer and more environmentally friendly alternative to epoxy
resin, eco resin can produce some stunning results

Creating with eco resin

E
Nicola King

Nicola King is a
freelance writer and
sub-editor. Madly
making things for a
Christmas fair stall – her
sewing machine, knitting
needles, and pliers are
working at speed.

@holtonhandmade

Right
Eco resin is growing
in popularity, and the
range of items you
can create is huge.
Entice out the artist
in you with various
decorative techniques

http://hsmag.cc/LEDsInResin

67

FORGE

STEP 2 COLOUR KALEIDOSCOPE
It’s over to you regarding the colour that you want to
add at this stage. We’ve seen jet black makes that
look incredibly effective with some gold leaf inserted
into the design. We have used some inexpensive
acrylic paint and mixed it in, with a light mixing
resulting in some pleasing marbled effects. The more
pigment that is added, obviously the more intense
the colour that results, but add the colour slowly until
you achieve the result that you are aiming for, as it’s
far easier to add more than to tame down the colour
if you go overboard. Also, you need to be aware
that adding any colour will affect the setting time of
the piece, so don’t add too much or you’ll find it will
take way longer to set or not set at all. We certainly
learnt a few lessons in this during our first few mixes,
and you definitely discover a great deal from a few
practice rounds.

This is a craft that
can get a little
messy – ensure that
your work surface is
protected, and wear
gloves to minimise
clean-up time later.

QUICK TIP

It’s just a little kinder to
both the user and the

environment while
still being strong

 and durable

”

”

YOU’LL NEED
Eco resin
compound
(water active),
e.g. hsmag.cc/
CastingResin

Silicone
mould(s),
e.g. hsmag.cc/
ResinMoulds

Digital scales

A silicone or
plastic mixing
container/cup
(ideally with a
spout for pouring)

A stirrer/mixing
stick and spoon

Colour/
decoration, e.g.
acrylic paint, mica
powder, pigments,
waxes etc.

Water

Gloves

Old newspaper
(to protect
table surface)

Sandpaper (for
wet sanding) and
beeswax/varnish
(for finishing)

CREATING EYE-CATCHING
EFFECTS

There are many options when it comes to creating some
fantastic colourful effects in your eco resin projects, as
it’s such a versatile medium. Here are just a few ideas:

	• Any water-based pigment, such as acrylic inks
or paints will work well. These have a smooth
consistency and mix really easily with the resin
compound. If you want a marbled effect, add
several drops of paint and gently swirl it a few times
with your stirrer, but don’t fully mix the paint in.

	• Mica powders, or some glitter, are also very
effective, and you really don’t need to use very
much to create something beautiful. We used some
metallic pigment colours, and loved the effect:
hsmag.cc/MetallicColour.

	• Embed some solid shapes into the mix, such as
shells, sand, small mosaic tiles, tiny beads, crystals,
jewellery charms, or natural gemstone chips.
They look particularly effective in the rims of pots
or coasters, and give it a great texture as well as
colour, making your project completely unique.
How about placing some dried flowers in the base
of a coaster mould, then pouring the eco resin over
the top?

	• Silver or gold leaf can also be used in the base of a
mould, with the resin poured over the top, and the
effect when your project is de-moulded is stunning.

Left
Some moulds filled
and ready to cure.
Make sure you have
some spare moulds
on hand as, if you
have mixture left over
after filling your main
moulds, you then
won’t waste anything

http://hsmag.cc/CastingResin
http://hsmag.cc/CastingResin
http://hsmag.cc/ResinMoulds
http://hsmag.cc/ResinMoulds
http://hsmag.cc/MetallicColour

TUTORIAL

68

Creating with eco resin

STEP 3 …AND POUR
When you are happy with the mixture, you can pour
it into the mould(s). Go slow and steady and try
not to waste anything, so any overflow should go
into another mould. Alternatively, you can pour the
remainder onto a flat surface, and onto something
like a plastic sheet, spread it thinly with an old lollipop
stick, for example, let it dry, and later break it up into
little ‘chiplets’ of colour that can be used in future eco
resin projects. These are called terrazzo chips.

You’ll find that air bubbles naturally rise to the
surface of the resin mix. Gently give the mould a little
tap or two, and the air bubbles will disperse, or you
can pop them with the end of a stirrer. When you
are happy, leave the resin to set. As an example, our
instructions told us to leave it for 60 to 90 minutes
to harden. You can then de-mould. However, allow
to dry for a further 24 hours to reach optimum cured
strength before you do anything else to it.

Right
We left the residue
mix to harden in
the plastic cup and
then flaked it off into
terrazzo chips

ECO RESIN VS EPOXY RESIN
We have used eco resin in this tutorial for a number of reasons, the main one being that
it is arguably a much safer product to work with than epoxy resin. While epoxy resin is
undoubtedly popular to craft with, and creates great-looking end products, there are a couple
of key factors that you need to bear in mind when you are handling it, including:

	• Chemical makeup: Despite the fact that formulations in epoxy resin have come a long way
over the last ten years or so, this resin is essentially a petroleum, chemical-based product,
and the chemicals can affect your health if they come into contact with your skin, or if you
breathe them in. They give off vapours which can cause allergic reactions (especially if
you suffer from asthma) and can ignite if not handled correctly. This resin is more toxic
in its liquid form than in its solid form. When working with epoxy resin, you should wear
gloves, safety glasses, protective clothing, and a respirator mask to safeguard yourself
from the vapours. Ideally, you should work in a very well-ventilated space, with open
windows to help disperse the epoxy vapours.

	• Synthetic epoxy resins are not particularly environmentally friendly, and won’t biodegrade
as easily as more eco-friendly resins.

Eco resins, in contrast, are water-based, a type of bio-based thermosetting plastic, often
made from plant-derived oils and natural fibres. They are non-toxic and have a lower
environmental impact and reduced carbon footprint, and some are biodegradable and
compostable. Eco resin behaves very much like concrete, with similar strength properties, but
you arguably have much less to worry about in terms of how it will affect both your health and
the health of the planet.

To reduce bubbles,
stir the mix slowly
and definitely avoid
aggressive mixing.

QUICK TIP

69

FORGE

STEP 4 FINISHING TOUCHES
Next, we need to sand the piece down to get rid of any
superfluous bits of resin around the edges, but also to
bring through the true colour of the piece, especially
if terrazzo flakes have been incorporated, as sanding
makes them more prominent. Note that wet sanding
is recommended (so you’ll need to use a sandpaper
that is designated for wet sanding), as it removes the
dust from your work as you go, and you might want
to wear a mask when sanding to avoid breathing in
fine particles. Follow sanding with a coat of some kind
of sealant, and this is particularly important if you are
making plant pots for example. This coating will add
strength, waterproofing, and generally prolong the life
of your make. You can buy clay sealing agents or acrylic
varnish, but we used some beeswax on a couple of
pieces, which worked well.

So, we hope you give eco resin a try, as this
author has found that not having to worry about toxic
ingredients really enhances the making experience,
making it a suitable craft for all ages.

Left
There are various
sealing options,
from natural finishes
such as beeswax
or coconut oil, to
water-based acrylic
sealers. If your piece
will be outside, use a
stronger sealer

WHAT CAN I MAKE?

The versatility of eco resin means there are plenty of
things you can whip up. The ceramic or concrete-like
appearance lends itself to contemporary:

	• Decorative homeware – think ornaments, candle-
holders, doorstops, plant pots, trays, trivets, egg
cups, vases, tiles etc.

	• Jewellery – mould some earrings, add some colour
and findings, and you have a beautiful gift. Make
charms for necklaces, bracelets too, key rings, or
fashion some hair attire.

	• Make some functional items like buttons using
a mould, a bookmark or a paperweight, or some
knobs for drawers.

There are a plethora of books on the subject, and we
found Eco-resin Crafts by Hazel Oliver to be really
useful. YouTube is also worth a search for relevant hints
and tips.

Clean your silicone
moulds before the
next use. Wash in
a bucket of soapy
water and make sure
that any residue is
thrown in the bin, not
washed down your
sink, or your pipes
will get clogged!

QUICK TIP

TUTORIAL

70

Turn an old phone into a robotic personal assistant

otary dial phones are fashionable
again. You can even buy brand new
‘old’ ones based on the original design
shown in Figure 1 below. These
have dials, but not the weight or
the authentic bell sound. The author

was completely unaware of this trend when he
picked up his red phone. The idea was to retain
the external appearance and behaviours but bring
the device up to date with all-new internals and
some fun behaviours. It seemed to him that there
should be room inside for a reasonable amount of
computing power, and he was keen to hear the old
telephone bell sound again. He wanted to create a
web-controlled device that could be used to receive
messages and alerts. The telephone that was built
contains a Raspberry Pi Zero 2 running JavaScript
code inside the node environment, using Express
to host a telephone website. You can find all the
code, 3D files for the mounting plate, and a setup
sequence for a Raspberry Pi in the GitHub repository
for the project here: hsmag.cc/DialTelephone.

DELVING INTO HISTORY
The first task was to open the telephone and check
the amount of space available for the new innards.
Figure 2 shows the printed circuit board (PCB) inside
the phone. This design was one of the first times a
PCB had been used in a UK telephone.

The author would have liked to have kept the
internal components in place so that the phone
could be returned to its original state if required.
Unfortunately, this turned out to be impossible.

WIPING THE SLATE CLEAN
The circuit board was cleared of components, and
a 3D-printed holder for the Raspberry Pi Zero with
prototyping board was inserted into the space, as
shown in Figure 3, overleaf. The phone will use
a 12-volt power supply, and it was found that a
power supply socket fits into the cord holder for the
exchange connection with an appropriate washer.

Figure 4, overleaf, shows the circuit for the
telephone. The two devices in the centre are two
‘buck converters’. The one on the left converts the 12-
volt power input into 35 volts to power the bell. The
second converts 12 volts into 5 volts to power the
Raspberry Pi. The handset switch is connected to the
handset cradle and indicates whether the handset is
on the phone. The dial pulse and dial active switches
are in the telephone dial, of which more later.

RING THE BELL
The bell in the telephone was originally driven by two
coils powered by a 75-volt alternating current signal
with a frequency of around 18Hz. The coils move a
bell-clapper left and right between two metal bells
tuned to different musical notes. The author was very
keen to retain the distinctive ring, but less keen on
getting 75 volts up his armpits when assembling the
phone. So, rather than using 75 volts AC, he opted to

Figure 1
The phone still looks
good nearly 50 years
after it was made

Bring an old phone into the 21st century by adding a Raspberry Pi
to turn it into a networked assistant

Turn an old phone into a
robotic personal assistant

R
Rob Miles

Rob Miles has been
playing with hardware
and software since
almost before there was
hardware and software.
You can find out more
about his so-called life at
robmiles.com.

http://hsmag.cc/DialTelephone

71

FORGE

use a much less tingly 35-volt supply, using software
to drive each coil in turn. Two MOSFET controllers
were used, one for each bell. These are connected
to general-purpose input/output (GPIO) pins on the
Raspberry Pi which are controlled by JavaScript
running the phone.

async ding() {
 this.bell1GPIO.on();
 await this.delay(25);
 this.bell1GPIO.off()
 this.bell2GPIO.on();
 await this.delay(25);
 this.bell2GPIO.off();
 return;
}

A single ‘ding’ is produced when the handset is
lifted or replaced, just like the old phones do. The
JavaScript above makes the bell go ‘ding’ when the
ding method is called. The code moves the clapper
towards each bell in turn. The delay values of 25
milliseconds between the movements of the clapper
were determined by trial and error.

async repeatRing(length) {
 for (let i = 0; i < length; i++) {
 await this.ding();
 if (!this.ringing) {

 return;
 }
 }
}

The repeatRing method produces a longer ringing
sound by repeatedly calling the ding method the
requested number of times. It checks the ringing

Figure 2
The circuit sends
audio signals through
the resistor bulbs if it
detects the phone has
a connection which is
close to the telephone
exchange. This
reduces the sound
volume and makes the
bulbs light up in time
with your speech

TELEPHONE ETIQUETTE

If you’ve only ever seen mobile phones up to now,
you might be wondering how a dial phone is used. If
the handset is on the phone, as seen in Figure 1, the
phone is waiting for an incoming call. The phone is
connected to a telephone exchange which makes
and maintains the connections between telephones.
To make a call you lift the handset, at which point the
exchange produces a dial tone you can hear from the
handset speaker. You use the dial to enter the digits of
the number of the phone you want to ring. After you
have dialled the last digit of the number, the exchange
connects to the destination phone and makes it ring.
When the receiver of the destination phone is picked
up, the exchange connects the microphone and
speakers of the phones together so that the phone
users can have a conversation. When either handset
is placed back on the phone, the exchange ends the
call. The software inside the Raspberry Pi emulates
this process.

YOU’LL NEED
An old-style
telephone with
a dial. The author
used a 746 model
he picked up in a
second-hand shop.
The author thinks
the phone should be
red, like the original
‘batphone’, but the
software will work
with other colours

A Raspberry Pi
Zero 2

2 × power
switches for the
bell. The author
used one with dual
D4184 MOSFETs
which can be
driven by the GPIO
signals from the
Raspberry Pi

2 × 1N4007 1A
1000 V silicon
rectifier diodes

A power converter
to convert 12 volts
to 35 volts for
the bell

A power converter
to convert 12 volts
to 5 volts for the
Raspberry Pi

A 12-volt power
supply for
the above

The author used a
Raspberry Pi GPIO
breakout board
to mount all the
components

A USB audio
adapter and
micro USB ‘on-
the-go’ cable to
connect it

TUTORIAL

72

Turn an old phone into a robotic personal assistant

flag after each ding and will stop ringing if this flag
becomes false.

async ukRing() {
 while (this.ringing) {
 await this.repeatRing(10);
 await this.delay(100);
 await this.repeatRing(10);
 await this.delay(1400);
 }
}

The ukRing method produces the characteristic
‘brring-brring’ sound of a UK telephone, which is two
rings separated by a silence of around one and a half
seconds. The length of each ring and the intervals
between them were also determined by trial and
error. In fact, the completion of this project seems
to have been accomplished with a lot of trial and an
awful lot of error.

MULTITHREADING WITH AWAIT
The statements in the ding and ukRing methods above
use the JavaScript await keyword to ensure that the
phone application can still respond to events (for
example, the handset being lifted) while the bell is
ringing. When a JavaScript program reaches an await
in a method or function, it creates another thread to
run from that point and returns, allowing the calling
function to continue. In other words, in the ding
method above, the first call of delay (which pauses
for 25 milliseconds) will not pause execution of the
program that called ding. Instead, the ding function
will return to the caller at that point. The ding function
is flagged as async, which means that it returns a
Promise object to be used by the caller to trigger other
actions when the ding has completed. The Promise

can be given event methods to be called when the
promise is resolved (i.e. when the ding has finished).
This form of multithreading is very flexible.

If it seems confusing, imagine that you could create
new versions of yourself at will. If you need to queue
to buy something, you could create a new version
of yourself, put that in the queue, and then go about
the rest of your business. At some point the ‘new
you’ will reach the head of the queue, get what you
want, and then call you and say it has finished before
vanishing in a puff of smoke. That’s how awaits and
promises work.

Figure 5, overleaf, shows the contacts inside the
dial. The white plastic cog in the centre has ten teeth
for each number. The plastic follower at the bottom
right-hand side of the dial swings out of the way
when the user is moving the dial clockwise and then
engages with the metal contacts when the dial is
returning, opening and closing a contact as it does.
The further the dial is turned, the more teeth will hit
the follower, and the more pulses will be sent. It is an
ingenious piece of mechanical design. The contacts
near to the centre of the cog in the centre are closed
when the user moves the dial from its ‘home’ position
so that the exchange can be told that the user is
dialling a number.

Figure 6, overleaf, shows the signals produced by
the dial when the user dials a three. The telephone
program in the Raspberry Pi must read these signals
to obtain this value so that it can be used to control
the phone. The decoding software uses functions
which are bound to events generated when the dial
signals change state.

startDialing(){
 this.pulseCount = 0;
 this.dialing = true;
}

READ THAT DIAL
The telephone dial is used to enter phone numbers.
The user puts their finger into the required number hole
(see Figure 1) and turns the dial clockwise until their
finger hits the metal stop at the bottom of the dial. The
dial is spring-loaded. When the user releases the dial, it
turns back to its home position. As the dial rotates back
to its home position, it sends a series of ‘dial pulses’ to
the exchange. If a larger number is entered, the dial will
rotate further. Telephone numbers contain a particular
number of digits; once the last digit has been entered,
the exchange will connect the call.

There is a
useful guide to
old telephones
here: hsmag.cc/
phoneT746. This
includes some
illustrations
that the author
thinks would
look great on
T-shirts.

QUICK TIP

Figure 3
The remaining two
connections (orange
wire and pink wire) are
for the switch that the
Raspberry Pi will use
to detect when the
handset is lifted. The
switch that detects
the handset remains
on the circuit board

http://hsmag.cc/phoneT746
http://hsmag.cc/phoneT746

73

FORGE

dialPulse(){
 if(this.dialing){
 this.pulseCount++;
 }
}

endDialing(){
 console.log(`Dialed a:${this.pulseCount}`);
 this.owner.numberDialed(this.pulseCount);
 this.dialing = false;
}

The startDialing method above is called when the
software detects a rising edge (a change from low
to high) on the ‘Dial Active’ signal. It sets pulseCount
to zero and sets dialling to true, which indicates that
a number is being dialled. The dialPulse method is
called on the rising edge of the ‘Dial Pulse’ signal.
It checks to see if a number is being dialled and
increments pulseCount if it is. The endDialing method
is called when there is a falling edge on the ‘Dial
Active’ signal. This calls the owner of the dial and
delivers the pulse count to the dial owner by calling
the function numberDialed. It then turns dialling off by
setting the dialling flag to false.

ADDING AUDIO
The Raspberry Pi Zero in the phone uses a USB audio
hardware interface to produce sounds. The output is
quite capable of driving the speaker in the handset.
The JavaScript program uses the play-sound library to
play sound files and the eSpeak program to convert
text to speech. Presently, the phone doesn’t support
audio input. This is because the microphone in the
telephone is implemented using a little foil box of
carbon granules which change in resistance when
vibrated by sounds. This change in resistance is used
to drive a coil in a transformer to generate the audio
signal to be sent over the phone line. This microphone
cannot be connected directly to the microphone
input on the USB sound interface. The author intends
to investigate using the transformer removed from
the phone to see if this could create a usable signal.
However, the phone is still great fun to use, even if
you can’t speak into it just yet.

BUILDING THE PHONE
Figure 7, overleaf, shows the completed phone
hardware. The two MOSFET switches are mounted
on a Raspberry Pi prototyping board which is plugged
into the Raspberry Pi Zero. The USB sound interface
is plugged into a micro USB ‘on-the-go’ adapter at
the back of the phone. The author was careful with
the 35-volt signals, especially after he destroyed a
Raspberry Pi Zero by accidentally touching one of
the ringer coil terminals with a GPIO input.

PHONE SOFTWARE
The phone software is implemented as several
cooperating JavaScript classes, each of which looks
after one part of the phone. The Phone object acts as
a container for these.

constructor(owner) {
 this.owner = owner;
 this.ringer = new Ringer();
 this.handsetSwitch = new HandsetSwitch(this);
 this.dial = new Dial(this);
 this.soundOutput = new SoundOutput(this);
 this.speech = new Speech(this);
 this.ringing = false;
 this.ringStart = null;
 this.ringLengthMillis = 10000;
 this.dialing=false;
 this.messages = null;
 setInterval(() => {
 this.update();
 }, 500);
}

The diodes across
the bell coils
protect the MOSFET
switches from the
reverse voltage
induced in the bell
coil when the bell
current is turned
off. The diodes
are not expensive,
but the author has
discovered that
missing them out
can be.

QUICK TIP

Figure 4
There is also USB
audio device plugged
into the Raspberry
Pi to provide the
sound output from
the phone

The further the dial is
turned, the more teeth will
hit the follower, and the
more pulses will be sent

”
”

TUTORIAL

74

Turn an old phone into a robotic personal assistant

The code above is the constructor for the Phone class.
It creates all the different phone component objects
and speech and sound output services, sets up some
initial values, and then starts an update timer ticking
which can do things such as time out the ringer. The
component objects trigger actions in the phone by
calling methods in the Phone instance. For example,
the Phone class contains a method called numberDialed
which is called by the Dial class.

numberDialed(number){
 if(this.handsetSwitch.handsetOffPhone()){
 this.delay(600).then(()=>
 {
 switch (number){
 case 1:
 this.startRinging();
 break;
 case 2:
 this.randomCall();
 break;
 }
 });
 }
}

The code above shows numberDialed. It waits for
around half a second to simulate the exchange
connection delay, and then if a 1 was dialled, the
phone starts ringing. If 2 was dialled, the handset
makes a random call.

randomMessages = [
 "I know what you did last summer.",
 "Is that you, Boris?",
 "Look out of the window.",
 "They are on to you.",
 "Look behind you."
];

randomCall(){
 let messageDelayMillis = this.
getRandom(2000,5000);
 this.delay(messageDelayMillis).then(()=>{
 let messageNo = this.getRandom(0,this.
randomMessages.length);
 this.acceptMessage(this.
randomMessages[messageNo]);
 });
}

The randomCall method waits a random time
between 2 and 5 seconds, picks a message from the
randomMessages array, and then calls the acceptMessage
to play it.

acceptMessage(message){
 this.message = message;
 this.startRinging();
}

The acceptMessage stores the message in the Phone
class and then starts the phone ringing. When the
handset is picked up, the message is played.

handsetPickedUp(){
 if(this.ringer.ringing){
 this.stopRinging();
 if(this.message){
 this.delay(1000).then(()=> {
 console.log(`Saying
message:${this.message}`);
 this.speech.say(this.message);
 this.message = null;
 });
 }
 }

The story that the
first telephone dials
were invented by an
undertaker to stop
telephone operators
(people who
connected telephone
calls for a living) from
learning about local
deaths and passing
on the details to
his competition is
not true. Almon
Brown Strowger
was an undertaker,
but he just wanted
to improve the
accuracy of
his telephone
connections.

QUICK TIP

Figure 5
The little brass
cup at the top
right-hand side of
the dial contains a
mechanical regulator
to limit the speed
at which the dial
turns back

It is fun to play with the
telephone itself, but

the phone is even more fun
when controlled remotely

”
”

75

FORGE

 else{
 this.ringer.ding().then(()=>
 {
 this.doDial();
 });
 };
}

The handsetPickedUp method is called when the
handset is picked up. Which just goes to show how
good the author is at picking names for methods. If
the ringer is ringing, it turns it off and then checks to
see if the phone has a message to say. If it does, the
message is spoken after a short delay to give the user
time to get the handset to their ear. If the ringer is
not ringing when the handset is picked up, it calls the
doDial method to start dialling a number.

doDial(){

 if(this.dialing){
 console.log("doDial called when already
dialing");
 return;
 }

 console.log("Dialing");

 this.dialing = true;

 this.soundOutput.playFile('dialTone');
}

The doDial method starts the dialling process. It sets
a flag to indicate that the phone is dialling (having first
checked that the phone is not already dialling) and
then plays the dial tone sound effect.

From the code above, you can see that the phone
works as a series of methods which are called in
response to events and modify values held in the
phone object. You can use this to make the phone
respond to dialled numbers in any way you like.

More advanced phone code could assemble longer
sequences of dialled numbers. The author thinks it
might be fun to create a ‘Phone powered’ mystery
game where the phone rings every now and then
and invites the player to perform an action and dial
responses to move through the game.

MAKING A TELEPHONE INTO A
WEB SERVER
It is fun to play with the telephone itself, but the phone
is even more fun when controlled remotely via the local
network. The RedServer.js program hosts a website
which can be used to remotely control the phone.

The Raspberry Pi in the telephone hosts the web
page shown in Figure 8, overleaf, on your local home
network. The author has set the Raspberry Pi machine
name as ‘theredphone’ and the site is hosted on port
3000. This means the site can be found on a home
network as theredphone.local:3000. The web server
is powered by Express, a popular library for hosting
web pages.

The Express library allows you to create ’routes’
which are pieces of code that are executed when
the client browser is used to access a particular
web address.

Figure 7
The two voltage
converters are
mounted on holders
which are then stuck
to the base of the
phone. You can see
them on each side
just above the dial

Figure 6
The ‘inout’ library is used to allow a Raspberry Pi JavaScript
application to interact with the GPIO pins

TUTORIAL

76

Turn an old phone into a robotic personal assistant

app.get('/', (req, res) => {

 res.render("index.ejs", {message:''});
});

The code above is performed when the user browses
the site. The Raspberry Pi in the telephone web
server uses the ejs library which allows us to create
web pages that contain JavaScript elements. When
the root is accessed, the server displays the index
page you can see in Figure 8 with a message value of
an empty string. The page layout is described in the
index.ejs file:

<!DOCTYPE html>
<html lang="en">

<head>
 <title>Red Phone Personal Assistant</title>
</head>

<body>
 <h1 class="mb-4">Red Phone Personal
Assistant</h1>
 Ring the phone now
 Stop the phone
ringing
 <form action="/sendMessage"
method="POST">
 <label for="email">Message:</label>
 <input type="text" id="message"
name="message" required>
 <button type="submit">Send the
message</button>
 </form>
 <p> <%= message %> </p>

</body>
</html>

When the user fills in a message and clicks ‘Send the
message’, the POST action sends the message text
back to the sendMessage server which runs a handler
that gets the message out of the body of the web
request and asks the phone to play it.

app.post('/sendMessage', (req, res) => {
 phone.acceptMessage(req.body.message);
 res.render('index.ejs', {message:'Message
sent'});
});

You can add more remote commands by adding
routes to the index page and then creating the
JavaScript handlers to deal with them.

FURTHER DEVELOPMENT
The author is very pleased with the phone and it
works well. He has even bought a second one with
a view to connecting them together – once he has
figured out how to make their microphones work. It
would be interesting to add speech decoding so that
the phones can recognise what the user says. The
Raspberry Pi inside should be able to do this.

The code for zero
generates ten
dial pulses, since
sending zero pulses
would make the
dialling process
vulnerable to noise
(a noise pulse on
the dial active line
would be interpreted
as dialling the value
zero). Remember that
in a real telephone,
these signals are
sent over cables
to the telephone
exchange.

QUICK TIP

Figure 8
When ‘Send the
message’ is clicked,
the phone will ring.
When the receiver
is picked up, the
phone will speak the
message that was
entered into the form

It would be interesting to
add speech decoding so that
the phones can recognise

what the user says

”
”

Your FREE guide to
making a smart TV

magpi.cc/mediaplayer

raspberrypi.com

BUILD A RASPBERRY PI

Power up your TV and music system
MEDIA PLAYER

FROM THE MAKERS OF THE OFFICIAL RASPBERRY PI MAGAZINE

https://magpi.cc/mediaplayer

TUTORIAL

78

KiCad, mechanical accuracy, and silkscreen features

t’s increasingly common for projects to
incorporate PCBs as a mechanical part
of the mechanism. In our last section, we
looked at hierarchical sheets and laid out a
motor driving circuit that we could copy and
paste to add motor drivers to a project. In this

part, we are going to create a simple robot rover
that we’re calling ‘stoRPer’. StoRPer is a tongue-in-
cheek reference to a favourite childhood toy from the
1980s: the ‘Stomper’. The Stomper, by toy company
Schaper, was the first ever four-wheel drive electric
toy car. Despite no form of remote control, they
were great fun to try and build obstacle courses
for, or to test on steep gradients. We wanted the
reasonable torque and the four-wheel drive aspects

of the Stomper but with the addition of a Raspberry
Pi Pico to make it a more interesting and controllable
platform – so, ‘stoRPer’ it is. It’s designed with all-
wheel drive (AWD) so that Mecanum drive systems
can be built and experimented with.

We are going to use Pico as a module on this build
and focus on some aspects of particular importance
when we are using a PCB as a mechanical part as
well as for electronic purposes. The idea for the
project is that the PCB will form the chassis of the
stoRPer, with the motors being clamped to the PCB
chassis using some 3D-printed parts. Therefore,
we need to be capable of placing components
and general PCB geometry accurately in order for
everything to fit together. We’ll also look at how
we can check our PCB and 3D-printed models
will fit together before we print or send the PCB
for fabrication.

One of the first jobs is to create a Pico symbol
component in the Symbol Editor. We covered creating
symbols in the earlier sections of this series, so we
won’t recap that process too much. We decided not
to include the Pico’s three debug pins on either the
schematic symbol or the PCB footprint. This was
partly because, across the different Pico models,
they are physically in different positions on the board
and also, as we intend to have a Pico mounted onto
this project, we can still interact/wire to the debug
pins if needed. As such, we laid out a simple 40-pin
component in the Symbol Editor and brought it into
our Schematic Editor. After quickly connecting all
the ground points, we set about connecting four
hierarchical sheets, each with an L9110S motor driver

Right
A custom Pico symbol
has been created,
with the majority of
the pins broken out

In this part of the ongoing KiCad series, let’s look at some techniques to increase
accuracy when aiming to create a PCB to be used as a mechanical structure

KiCad, mechanical
accuracy, and
silkscreen features

I
Jo Hinchliffe

Jo Hinchliffe is a
constant tinkerer and
is passionate about all
things DIY space. He
loves designing and
scratch-building both
model and high-power
rockets, and releases the
designs and components
as open-source. He also
has a shed full of lathes
and milling machines
and CNC kit!

79

FORGE

IC-based circuit inside. We covered working with
hierarchical sheets in the last section of this series,
but you can see the circuit layout in Figure 1. Each
of the four motor drivers has its own sheet and has
two pins broken out. We’ve connected these sets of
pins to the Pico symbol using labels A1, B1, A2, B2,
etc. The rest of the Pico’s pins are broken out and
connected to some multi-pin connectors, ready to be
broken out on the PCB.

For the stoRPer project, we’ve decided to mount
the Pico using the through-hole header pads on the
Pico rather than the castellated edge connectors.

This means that we won’t be mounting the Pico
flush to the project, but it does mean that the
Pico footprint is thinner. We can also choose to
use header sockets or not to allow the Pico to be
permanently or temporarily mounted to the PCB.

The header pin pads on the Pico lie in a 2.54 mm
pitch grid, with the 20 pins on either side being
separated by 7*2.54 mm. This makes them easy
to lay out – simply add pads on a 2.54 mm grid in
the Footprint Editor (Figure 2). We also want to be
able to place a rectangle on the silkscreen layer that
accurately shows the position of the board.

Consulting the Pico documentation, we can find a
technical drawing and see that the outer edge of the
Pico is 51 mm × 21 mm. We also need to consider
the position of this rectangle relative to the pads that
we have just created. We can see in the technical
drawing, for example, that relative to the centre of
the upper left-hand pin (pin 1), the upper-left corner of
the Pico is 1.37 mm higher in the Y axis and 1.61 mm
over to the left in the X axis. To use this information,
we can go back into the Footprint Editor and place
our pointer on the grid point in the centre of the pad
we placed for pin 1. If we then press the SPACE
bar, we will set the local origin of the page to be 0,0
at this point. We can check this by looking at the
bottom of the screen as we move our pointer, the
distance should increase relative to this point. We
can then set a user grid to 1 mm spacing and use
this grid to draw our 51 mm × 21 mm rectangle.

Left
The stoRPer robot
prototype using the
PCB as its main
chassis component

Figure 1
The layout of the
L9110S motor driver
circuit cloned into four
hierarchical sheets

The rest of the Pico’s
pins are broken out

and connected to some
multi-pin connectors

”
”

TUTORIAL

80

KiCad, mechanical accuracy, and silkscreen features

If we then select the rectangle, we can right-click
and scroll in the drop-down menu to Positioning
Tools > Position Relative To…. Selecting this, we will
see a dialog box – in the dialog box, click to select
‘Use Local Origin’ and then adjust the ‘Offset X’
and ‘Offset Y’ by the amounts we derived from the
technical drawing (Figure 3). Note that, by default,
the origin corner of the rectangle is the top left-hand
corner. Using this method, you should be able to
place items with incredible accuracy.

One thing of note is that despite our stoRPer
robot design being relatively simple mechanically
– a rectangular PCB – we do want to be able to
place footprints accurately within the edge cut
area. When designing this and other footprints,
it’s worth considering where your origin point is
in the Footprint Editor and placing the device in a

known position relating to it. We opted to place the
Pico footprint so that the upper left-hand corner of
the silkscreen box depicting the edge of the Pico
was the origin point on a 1 mm grid spacing. This
meant that later, when we placed a rectangle in the
PCB Editor that represented the edge of the PCB,
we could place it in a position such that the Pico
is dead centre, with the larger box also placed on
a 1 mm grid coordinate. After playing with a few
test boxes in KiCad, we decided our rectangular
chassis dimensions would be 64 mm × 86 mm.
We used Inkscape to draw our rectangle as we
could then easily add a 2 mm radius to each corner

LOTS OF HOLES

When creating footprints with lots of through-hole
pads, KiCad makes it pretty simple: you click to add a
pad and then the tool indexes to the next numerical
pad for you to place. If you’ve placed and positioned
a lot of pads though, it can be annoying to realise that
you need to change an aspect of the pad’s properties
for all of them. KiCad has you covered, though. As an
example, when we made the footprint for a Raspberry
Pi Pico and decided that after laying out 40 standard
through-hole pads, we wanted to increase the internal
hole diameter and the overall outer diameter to
increase the size. The Footprint Editor conveniently
recognises that this is a common situation and, as
such, you can simply change one pad to your desired
pad properties and then, with your adjusted single pad
highlighted, you can right-click and select ‘Push Pad
Properties to Other Pads…’ to make all compatible
pads change to the new characteristics.

Figure 2
Creating the simple
yet accurate Pico
footprint

Figure 3
Using the ‘Position Relative To…’ positioning tool to accurately
place objects in the Footprint Editor

We want to 3D-print
some brackets to
clamp the motors

into position

”
”

81

FORGE

of the rectangle. We’ve again covered importing
graphics in an earlier section of this series, but we
easily imported the rectangle we drew as an SVG
in Inkscape into our edge cuts layer using the File >
Import > Graphics function.

With the Pico placed and the PCB edge defined,
we need to consider the physical mounts for the
motors. We want to use the excellent and available
N20-style geared motors, mounting one for each of
the four motor driver circuits. We want to 3D-print
some brackets to clamp the motors into position,
so we need to leave some space for the 3D print
material around the motor, and we need to take this
into account when creating a footprint for the motor
mount. After some consideration, we created a
custom footprint which consisted of two non-plated
through-hole (NPTH) mechanical pads placed in-line.
These were placed at a distance between centres
of 26 mm, placed on a 1 mm grid spacing. To place
an NPTH mechanical hole, you place a regular pad
and then press E to change the pad type in the Pad
Properties dialog. We set each NPTH hole to 2.1 mm
internal diameter to create clearance for a small M2
bolt. To finish the footprint for the N20 motor mount
clamps, we added a silkscreen rectangle set to the
dimensions of the base of our 3D-printable mount
design (Figure 4). Note that this is the first time in
the series that we have placed extra components
which aren’t connected to anything or included in
the schematic in the PCB Editor. To do this, we click

the ‘Add a footprint’ tool icon and select a footprint
in a similar manner to how we would place a symbol
in a schematic.

Adding and removing text-based elements to
a silkscreen layer is reasonably straightforward
in KiCad 7. On more technical PCBs, as opposed
to artistic PCBs, we often lay out our PCB design
with little regard for the silkscreen and then sort
the silkscreen layer out later in the development.
Often, one of the first tasks is to remove unwanted
elements on the silkscreen that have been
automatically placed by the use of default library
footprints. We can select the correct silkscreen
layer, often the front silkscreen ‘F.Silkscreen’, and
for items such as footprint reference annotation,
we can simply left-click to select them, then move
them or press the DELETE key to remove the item.
It’s common for this reference to not be placed

As the stoRPer
design evolved,
we used simple
rectangular boxes
drawn in KiCad
on either the
F.Silkscreen or the
User.Comments
layer as guides and
visual aids.

QUICK TIP

Figure 4
The mechanical
footprint that will
mount the N20 motor
and clamp

Figure 5
Editing a footprint
with the component
selected and opened
in the Footprint Editor
from the PCB Editor
gives the option of
only editing that
individual instance of
the footprint

TUTORIAL

82

KiCad, mechanical accuracy, and silkscreen features

Above
The combination of
KiCAD and FreeCAD
make a great open
source toolchain

Figure 7
A new feature in KiCad 7 is the ability to add knockout text
items, where the text is subtracted from a small block on the
silkscreen layer

FREE BOOK

In the free-to-download book FreeCAD for Makers
from Raspberry Pi Press, we looked extensively
at the use of the KiCad StepUp workbench which
enables and simplifies importing KiCad projects as
3D objects into FreeCAD as well as the creation of
3D components for inclusion into KiCad’s 3D PCB
viewer. It’s an incredibly powerful suite of tools and is
definitely worth exploring. For this project, however,
we just wanted to check if the motor clamp we had
created in FreeCAD would fit our PCB chassis. You
can use File > Export and select the ‘STEP…’ option
to export a STEP file which can be imported into
FreeCAD; however, this will lack the details of the
copper layers and silkscreen which you might need
to see to check if mechanical components cover
aspects of your PCB design. One simple approach that
solves this is to export a WRL file. WRL files are file
types often used by assets destined for use in virtual
reality, but they have the advantage in KiCad that a
WRL export contains all the visual details of your PCB.
We used File > Export > ‘VRML…’ to export a WRL file,
and then we used File > Import in a new document in
FreeCAD to import the file. We’d made a simple N20
clamp component which had 2 mm radius corners on
two corners matching our PCB and N20 motor clamp
footprint. While we could have used an Assembly
workbench, such as A2plus in FreeCAD, to constrain
the clamp in position, for a simple check, we can move
the part into alignment to visually check how it looks.

Figure 6
The Text Properties dialog where you can set text features,
including the new ‘Knockout’ feature

83

FORGE

optimally and may sit under or across other parts
and components. The annotated reference is formed
from both the automatic annotation of the schematic
during the footprint association process and the type
of component it is, so R for resistor, C for capacitor,
J for connector, U for IC, etc. As they replace the
placeholder Ref* designator, they are independent
of the main footprint design and, as such, can be
removed with ease. If, when tidying the PCB design,
you want to move a part of the silkscreen design of
a footprint, you will need to edit that in the Footprint
Editor. KiCad makes it easy to edit the footprint and
apply the changes just to the individual footprint
within this project rather than pushing the changes
to the global footprint library. With a target footprint
selected in your PCB, press CONTROL and E to
open the footprint in the Footprint Editor. You should
see the footprint in the editor with a message in
the upper left-hand corner of the window that reads
‘Editing J4 from board. Saving will update the board
only’, where ‘J4’ will be the reference of whatever
footprint you have opened (Figure 5). You can now
make any changes to the footprint that you require,
including deletion or changes to the graphical
silkscreen elements.

Of course, often we want to add text-based
components to our board designs. Again, KiCad
makes this pretty straightforward. We can simply
click the ‘Add a text item’ tool icon and then left-
click in the PCB design. The ‘Text Properties’ dialog

is pretty straightforward and we can insert text,
make changes to the font and size as well as change
the orientation of text. One interesting new addition
to KiCad 7 is the ‘Knockout’ option (Figure 6). If
you input some text into the Text Properties dialog
and click the Knockout checkbox, then the text will
be created as a solid silkscreen block with the text
removed. It’s a great effect, looks smart, and is very
readable – a welcome new feature (Figure 7).

Finally on adding text, sometimes you might
like to add text to the silkscreen layer as a graphic
rather than directly as text. We’ve briefly looked at
importing graphics before for either creating edge
cuts geometry or for importing logo graphics from
Inkscape. One notable point is that if you use the
text creation tools in Inkscape and then directly
try to load them as a graphic element, this will
fail as KiCad SVG import doesn’t recognise the
text elements. This is pretty easy to rectify.
As an example, we created our stoRPer text in
Inkscape and then, with the text object selected,
we click Path > Object to Path (Figure 8). As usual,
we edit the document properties in Inkscape so
that the document is the size of the text object –
we then save the file as a standard SVG. In the
PCB Editor, we then select File > Import > Graphics
to import the file, ensuring to select the correct
‘F.Silkscreen’ as the graphic layer. The text graphic
then imports correctly and can be placed in the
design where required.

Figure 8
Converting a text
object to a path in
Inkscape ready for
import into KiCad

+

DON’T MISS THE BRAND NEW ISSUE!

SUBSCRIBE
FOR JUST

£10!

NEW MODEL!

> �FREE! Raspberry Pi
Pico W

> �THREE! issues
of The MagPi

> �FREE! delivery
to your door

FREE
RASPBERRY PI
PICO W*

Three issues and free Pico W for £10 is a UK-only offer. Free Pico W is included with a
12-month subscription in USA, Europe and Rest of World. Not included with renewals.
Offer subject to change or withdrawal at any time.

magpi.cc/subscribe

* W
hile stocks last

http://magpi.cc/subscribe

FIELD TEST
HACK MAKE BUILD CREATE
Hacker gear poked, prodded, taken apart, and investigated

96
PG

Program your Pico with JavaScript
OPEN UPCELL

Speed up your projects

92
PG

METRO M7
WITH AIRLIFT

DMI output with MicroPython

94
PG

PICO VISION

BEST OF
BREED

Build a retro arcade

PG86

ONLYTHE

BEST

Retro arcade roundup

BEST OF BREED

86

s soon as I heard about the
Raspberry Pi 5, my first thought
was, ‘retro arcade’! With the
performance boosts and long history
of support for classic arcade games, it
seems like a great combo. I fully

understand that you can do a lot more with a
Raspberry Pi 5, but it’s hard to say you could have
more fun!

Custom arcade builds are always a popular project.
I think a lot has to do with the demographic of the
Raspberry Pi community, but I also think it’s because
it’s one of those projects that you can easily succeed
in accomplishing, and it has a long-term fun factor. It
doesn’t always have to be a full-size arcade in your
house, either. A simple shoebox-size enclosure is all
you need to get a Raspberry Pi hooked up to your TV
and have a ton of fun on your next game night.

In this roundup, I’ll be looking at a few boards and
accessories to get you inspired to build your own
retro arcade – mostly Raspberry Pi-based, but not all.
And if you are clamouring to get your hands on a
Raspberry Pi 5, you’re going to need a project to kill
some time while you wait for it to ship, so why not
build an arcade?!

Build your video games!

By Marc de Vinck @devinck

A

Retro arcade roundup

https://twitter.com/devinck

87

FIELD TEST

f you’re just getting started building an
arcade cabinet, the Arcade Parts Kit by
Pimoroni is a very convenient and
affordable starting point. Pick up one set for
a simple one-player game build, or a second
set for some two-player action.

Each kit comes with the proper eight-way gated
joystick for that traditional arcade feel. The kit also
includes ten 30-millimetre push-fit arcade buttons,
including four black, two yellow, two pink, and two
blue. You also get a very handy matching wiring loom
for hooking it all up quickly and easily. And speaking
of hooking it up, don’t forget to pick up a Player X
USB Game Controller, also available at Pimoroni, for
just $12 to make connecting all of this to your
Raspberry Pi a breeze.

I
PIMORONI $26.35 pimoroni.com PIMORONI $41.91 pimoroni.com

Arcade Parts Kit vs
Picade Plasma Kit

Arcade Parts Kit
A great collection
for a good price.

Picade Plasma Kit
Add some colour
to your build.

8/10

10/10

VERDICT

icade Plasma Kit from Pimoroni is an
interesting and colourful addition to
your arcade build. Why settle for those
ordinary plastic buttons when you can
swap them out with the included crystal-
clear buttons, and included custom

plasma PCBs to add a rainbow of colour to your build?
Each PCB fits behind the clear button and features an
APA102 addressable RGB LED. Now your buttons can
be any colour you want!

You have a choice of a six- or ten-button kit.
Whichever you choose, you’ll get everything you need
for a simple replacement of your old buttons, including
30-millimetre push-fit arcade buttons, the custom-
designed plasma PCB, and the required wiring to hook
it all up. Check out the Pimoroni website for more
information about this fun kit, along with notes on how
to hook it up to your Raspberry Pi.

P

http://pimoroni.com
http://pimoroni.com

BEST OF BREED

88

Retro arcade roundup

es, I have covered this product
before, but when I think of getting
started with building a retro arcade
system, I always think of the Adafruit
Arcade Bonnet for Raspberry Pi.
Mostly because I have recommended it

to so many people when first starting out with arcade
building. No, a Raspberry Pi Zero isn’t the best
Raspberry Pi for retro gaming, but it runs a lot of the
classics perfectly, and it’s also incredibly inexpensive.

The Bonnet is the same size as the Raspberry Pi
Zero, making it perfect for small builds. And because of
all the on-board JST connectors, and with the
appropriate wiring harness also available, you can be
up and running quickly, and without any soldering. So,
if you want a simple and affordable arcade build, be
sure to check the Adafruit product page.

Y

Adafruit Arcade Bonnet for
Raspberry Pi with JST Connectors

Adafruit Arcade
Bonnet for
Raspberry
Pi with JST
Connectors

A great addition to
your Raspberry Pi.

9 /10

VERDICT

ADAFRUIT $14.95 adafruit.com

I think using a proper-feeling joystick is imperative for any
retro arcade build. You’ll want that gated and ‘clicky’ feel
that you don’t get from modern joysticks. This one, from
Adafruit, is a perfect retro-style eight-way gated joystick.
It will give you that classic feel and sound thanks to its
old-school build. Wiring and usage are easy, since it’s
basically four buttons connected mechanically to the
joystick. No modern potentiometers or encoders here!
And that’s exactly the point!

ADAFRUIT $14.95 adafruit.com

SMALL ARCADE JOYSTICK

http://adafruit.com
http://adafruit.com

89

FIELD TEST

ot everything in this roundup is
Raspberry Pi-related. The ARCADE
for MakeCode Arcade, available at
Pimoroni, is a great way to get started
building your own handheld arcade
games. If you are new to electronics,

or even new to programming, but still want to build
fun games, then this is a great place to start.

You’ll use the Make Code Block Editor to build your
games. You can start from scratch or download tons
of games available online and modify them how you
like. You can also write games in JavaScript, but that’s
a lot more difficult for beginners. Under the hood is an
Atmel SAMD51J19A which controls the 160×128
LCD screen, buttons, haptic feedback motor, and
piezo speaker. All you need to do is add 3 × AA
batteries and you’ll be building or modifying your own
games in no time. If you know anyone looking to jump
into programming games, this is a great place to start.

N

ARCADE for MakeCode Arcade
PIMORONI $41.28 pimoroni.com

ARCADE for
MakeCode
Arcade

Everything to get
started building
simple games.

9 /10

VERDICT

http://pimoroni.com

BEST OF BREED

Retro arcade roundup

90

Pico Display Pack 2.0

Arcade Cabinet Kit

PIMORONI $20 pimoroni.com

GAMEROOMSOLUTIONS $649 gameroomsolutions.com

he Pico Display Pack is designed to
be a simple way to create a user
interface device with your Pico. But
creating a navigation system for your
app or project isn’t the only possibility,
although it does a great job at that task!

Yes, you could also make some simple games! You’ve
got a 320×240 display and four buttons (think X, Y
and A, B). What else do you need?

The Pico is very capable of running the graphics
and some retro game code. The Display Pack comes
fully assembled – no soldering required. Just add your
Pico, with headers, and you’ll be on your way to
programming with this fun add-on. Head over to the
Pimoroni website for a lot more information about
using a Raspberry Pi Pico and the PicoGraphics
function reference to get up and running.

f you’re still holding out for a Raspberry Pi 5
retro gaming system, why not start on the
enclosure? It’s one thing to get your
Raspberry Pi up and running, but it’s a whole
other set of skills to house your arcade system
in a beautiful enclosure. And nothing looks

better than a full-size arcade cabinet.
Not everybody has enough tools or space to build a

full-size arcade cabinet. But if you have the room in
your house, you can still get your hands on a
customizable, full-size arcade cabinet. These kits by
Game Room Solutions offer a variety of shapes and
customizability. And best of all, you don’t need any
special tools to assemble them. You’ll still have to
supply your own electronics, but in most situations,
that’s the easy part. I managed to fit two of these in
my house, and they are always a big hit with visitors.

T

I

Pico Display
Pack 2.0

Perfect for some
simple games.

10 /10

VERDICT

Arcade Cabinet
Kit

A good solution
if you want to
save time.

9 /10

VERDICT

http://pimoroni.com
http://gameroomsolutions.com

Learn coding
Discover how computers work

Build amazing things!

magpi.cc/beginnersguide

House_Ad_Beginners_Guide_5th_Ed.indd 1House_Ad_Beginners_Guide_5th_Ed.indd 1 09/11/2023 16:0709/11/2023 16:07

http://magpi.cc/BGbook

Metro M7 Airlift

REVIEW

92

Metro M7 with Airlift

@ben_everard

Who needs efficient code when you’ve got more clock cycles?

By Ben Everard

T

ADAFRUIT $29.95 hsmag.cc/metrom7

he NXP iMX RT1011 that sits at the
heart of the Metro M7 is, frankly, a
ridiculously powerful microcontroller.
It’s based on the Arm Cortex-M7 core
and runs at 500MHz.

Twenty-two of the microcontroller’s
GPIO pins are broken out in the classic Uno (what
Adafruit calls Metro) style. This means that there’s
already an ecosystem of shields that can go on top
to provide additional hardware, though the majority
of these shields come with support for the Arduino
programming language rather than CircuitPython, and
many are 5 V, while this board runs at 3 V. If you’re
planning on using this with a third-party shield, make
sure they will work together, not just physically fit.

Hardware doesn’t have to be slotted on top,
though. The M7 Metro also comes equipped with a
Qwiic port for attaching I2C hardware – there’s a huge
range available from Adafruit and other suppliers.

Alongside the main powerful microcontroller,
there’s a second microcontroller – an ESP32 that’s
used for wireless networking. In theory, this can do
both Wi-Fi and Bluetooth Low Energy, but at the
moment, there’s only support for Wi-Fi. Adafruit calls
this setup, using a secondary ESP32, Airlift.

The Airlift networking setup offloads most of the
work onto the secondary microcontroller. This means
that your main processor isn’t burdened with the
various issues of keeping connected and shuffling
data in and out. That’s perhaps less of an issue on this
beast of a processor than on some others, but it does
mean that your code’s performance should be far
more predictable.

We tested the Metro M7 Airlift that includes
wireless connectivity and costs $29.95, but there’s
also a version without wireless (and with an SD card
port) that comes in at $19.95.

Perhaps the most unusual thing about this board
is that – unlike almost all of Adafruit’s other boards
– you can’t use it with the Arduino IDE. You can
program it with CircuitPython or the MCUXpresso
IDE created by NXP (the microcontroller’s designers).
For most people, that’s likely to mean that this is a
CircuitPython board.

IN USE
We tested this out with some audio code. Not so
long ago, we were pretty happy if we could make a
microcontroller go beep while also doing something
else. With this, we were able to play ten WAV files
and dynamically adjust the volume simultaneously,
and make it Wi-Fi accessible. What’s more, we
were able to do all of this in Python. Some of this
is, of course, down to improvements in hobbyist
microcontroller software over the years, but it’s also
due to the fact that this is almost as powerful as the
PC we used to use to program microcontrollers.

Below
The ESP32 Wi-Fi
module includes an
on-board antenna

http://hsmag.cc/metrom7

FIELD TEST

93

Left
With two powerful
processors, there’s
a lot packed onto
this board

VERDICT
A powerful
board with
Wi-Fi and great
CircuitPython
support.

10/10

We also speed-tested the Metro M7 against the
Adafruit Grand Central M4 Express and the Metro
ESP32-S2. These are two of the fastest CircuitPython
boards from Adafruit, running an Arm Cortex-M4 at
120MHz, and a 240MHz Tensilica core, respectively.

We found the M7’s performance to be about
five to six times faster than the M4 across a range
of different areas, including integer and floating-
point maths. This is down to both the higher clock
speed and the fact that the M7 core can do more
computation in each clock cycle. When compared to
the ESP32-S2, performance was a bit more varied,
but the M7 always came out on top. GPIO access and
floating-point arithmetic was about twice as fast, and
integer arithmetic was about 4.5 times the speed.

You might think that more computing power is
always a good thing, but it does have a drawback. It
needs more electrical power to keep it running. Given
modern batteries, this is less of a problem than it
used to be, but if you need something to run off-grid,
you probably want to think a bit about whether you
really need this amount of processor power.

The Arm Cortex-M7 is a powerful microcontroller
core, but the Metro M7 Airlift isn’t the only high-
speed Arm Cortex-M7 board, so it’s not just a matter
of choosing a fast microcontroller – it’s a question
of whether you want this M7 microcontroller. It’s
reasonably chunky, but whether this is a plus or
minus is down to your particular project. Given that
this isn’t compatible with the Arduino IDE, and that

the Uno hasn’t been the dominant form factor for
microcontroller add-ons for over half a decade, it’s
unlikely that this form factor is going to be important
to you. That said, we’re quite fond of this size. It’s
not too fiddly to work with, but still small enough to
fit most spaces, and we prefer socket headers to
the more popular pin headers. The Metro M7 Airlift
is the only Wi-Fi-enabled M7 board that we’re aware
of, so if you need both oodles of power and network
connectivity, then this is a good choice. CircuitPython
support is great, as you would expect of a board
from Adafruit.

This is the sort of board we like to use when
prototyping projects. We might not need the raw
performance or the dedicated networking hardware
in the final build, but it’s good to have it there while
testing everything out and getting it all working. Yes,
this is ridiculously powerful for a microcontroller,
and yes, few of your projects really need this much
grunt, but having power to spare can make the
build go a bit smoother and lets you worry about
optimisation later.

Having power to spare can
make the build go a bit

smoother and lets you worry
about optimisation later

”
”

PicoVision

REVIEW

94

PicoVision
Power your TV with Pico W

By Ben Everard

C onnecting an HDMI display to
a microcontroller is a pretty
challenging task. The sheer rate of
data that has to fly through the wires
is daunting, and that’s not taking into
account any processing you might

want to do on the data. RP2040 manages to do this
with its programmable input/output system which
attaches state machines to the I/O pins and can
shuffle data out without any processor involvement.
We’re using the term ‘HDMI’ here because you plug
in an HDMI cable and use it with an HDMI monitor.
However, for the pedants among you, it is technically
using DVI. HDMI is backwards-compatible with DVI,
so this needn’t concern you in use.

RP2040 is limited by how fast it can run, so you’ll
probably find that PicoVision can’t manage the full
resolution of your display. PicoVision does go up to
1280×720, however, it does this by pushing both
RP2040 and the HDMI protocol beyond their defined
limits, so this won’t work on all PicoVisions or all
displays. 720×480 is a more reliable target. As well
as a limited resolution, there’s also a limited set of
colours available. There’s a set of images and GIFs
on the PicoVision page which give a realistic idea
of what’s available (they match with our experience
using the board).

PicoVision combines two microcontrollers – one
RP2040 does the hard work of throwing data down
the HDMI connection, leaving a second RP2040 (in
the form of a Pico W) free to do whatever processing
you want. These two interact using a pair of PSRAM
buffers. The Pico W writes to one while the HDMI-
RP2040 sends the other to the display.

Alongside the two microcontrollers and an HDMI
port, there are three user buttons, a microSD card
port, a STEMMA QT / Qwiic connector, and an I2S
DAC for audio output. There is also the USB port
which can (when being used with C++) be used in
USB Host mode. You can attach a USB keyboard. In
theory, most USB hardware can be connected, but
in practice, it entirely depends on what information
you can get about the hardware and how much effort
you’re willing to put into writing a driver for it.

The double RP2040 architecture means that you
have one Pico W that you can use as you would
any other Pico W. You have almost all the resources
available for your program, with the exception of the

Right
You can combine
text and images
to create your
frame. In this case,
an info screen with
data grabbed from
the internet

PIMORONI £34.50 hsmag.cc/PicoVision

http://hsmag.cc/PicoVision

FIELD TEST

95

VERDICT
The best
microcontroller
board for
controlling
larger screens
that we’ve used.

10/10

GPIO pins, most of which are in use. You can program
this with either MicroPython or C++. In MicroPython,
PicoVision is controlled by the display module in a
similar way to other Pimoroni products – this lets you
build up your output from shapes, sprites, and text.
There’s a good set of examples to show you how to
use this. It’s a bit rudimentary, but it’s easy to use and
works well.

This does all pose the question of what you would
want an HDMI-enabled microcontroller for. Pimoroni
obviously has something in mind as, alongside this
board, they’ve announced a competition to create the
best demoscene-style demo. In Pimoroni’s words,
this means: ’Demos are often characterised by their
impressive graphical effects, compelling soundtracks,
and the intricate interplay between visuals and audio,
all typically constrained within specific hardware or
file size limits. This constraint-driven creativity pushes
sceners to extract every ounce of potential from a
given platform’.

As well as giving geeks a chance to display their
skills, PicoVision is a good option for anything that
wants both a microcontroller and a medium-to-large
display. You might mostly think of HDMI as being for
monitors and TVs, but there’s a wide range of HDMI
displays from about 5 inches up, and they often come
with mounting hardware for embedding in projects.
We can’t ignore that – at this price point – there
are other things that can generate HDMI output
and do a lot of other things at the same time, such
as a Raspberry Pi Zero. PicoVision offers a very

different set of things. Raspberry Pi Zeros offer a full
Linux environment, which is either great or terrible
depending on your use case. It’s great if you need the
power that this offers. However, if you don’t need
the power (you just want to put some images on a
screen), it’s a pretty terrible option because it comes
with a huge amount of things that can go wrong,
need updating, and generally require attention.
By removing all that, PicoVision has the potential to
be more understandable, more reliable, and also
more robust.

We suspect that a pretty large part of the market
for PicoVision will be people who enjoy the simplicity
of microcontroller programming and want to push
it to its limits, for this is, by a significant margin, the
easiest microcontroller board we’ve ever used for
working with larger displays (beyond the SPI displays
that go up to about 4 inches). If this is what you
want to do, whether for practical reasons or just to
see what performance you can squeeze out of the
processor in the style of the demoscene, then this is
by far the best option.

PicoVision is a good option
for anything that wants

both a microcontroller and a
medium-to-large display

”

”

Above
There’s a Pico W on
the front and another
RP2040 on the back

96

Crowdfunding now

REGULAR

$50 hsmag.cc/OpenUpCell Delivery: April 2024

odern batteries are tiny, hold a lot of
power, and are rechargeable. We’ve
come to take these things for granted,
but it really is miraculous. So much
modern technology relies on the

chemistry of lithium – from power tools to mobile
phones, and even the laptop on which this review is
being written. It’s great to make use of this in our
projects, however, so often we find the maker-friendly
lithium battery hardware a bit limited for our needs.
Many easy-to-use options are slow to charge and
limited to small cells. There is good reason for an
abundance of caution with lithium batteries – they’re

potentially a dangerous technology – mistreat the
batteries, and there’s a risk of a particularly noxious fire.

Open UpCell looks like it solves a lot of the
problems – it enables fast charging with an off-the-
shelf USB charger, it accepts a wide range of battery
form factors, and it can output up to 3 A at 3 or 5 V.

These are all great features and, as always, great
features come at a cost, and in this case, it’s $50.
That’s steep for a power supply, but if you need it,
then it may save you a lot of pain and hassle.

We’ve not used it, so can’t confirm if it actually
works as promised but, potentially, this could make
battery-powered projects a whole lot easier.

M

Make everything portable

CROWDFUNDING
NOW

Open UpCell

http://hsmag.cc/OpenUpCell

97

When backing a crowdfunding
campaign, you are not purchasing
a finished product, but supporting
a project working on something
new. There is a very real chance
that the product will never ship
and you’ll lose your money. It’s
a great way to support projects
you like and get some cheap
hardware in the process, but if
you use it purely as a chance to
snag cheap stuff, you may find
that you get burned.

BUYER
BEWARE !

Above
Open UpCell includes
a temperature
sensor to help it
charge safely

Left
The pinout includes
an I2C connection
for retrieving details
about the battery’s
current state

DON’T MISS OUT

ALSO
 RASPBERRY PI

 3D PRINTING

 MUSIC

 PCBS

AND MUCH MORE

ON SALE
14 DECEMBER

DIY
GADGETS

hsmag.cc/subscribe

http://hsmag.cc/subscribe

Tiny Tapeout
The chip industry is incredibly complicated. Its raw materials are rare
and hard to source, and must be refined several times over to get
silicon pure enough to produce a usable wafer. At the highest end of
the industry, the machines that engrave chip designs on these silicon
wafers are made in only one factory, and cost up to $200,000,000 each.
And again, at the cutting edge of chips, there’s only one company that
makes chips in significant numbers: TSMC – the Taiwan Semiconductor
Manufacturing Company.

Despite this, you too can have a go at creating your own chip. At the
centre of this board is a finished chip featuring designs by students
on Matt Venn’s Zero to ASIC course, using 100% open-source tools.
We can’t all have a chip manufacturing factory, but we can all be
chip designers.

231108_YTIG_HS_UK.indd 1231108_YTIG_HS_UK.indd 1 10/30/23 3:32 PM10/30/23 3:32 PM

https://digikey.co.uk

	001-HS#73-COVER
	002_HS#73_IFC
	003_HS#73_WELCOME_NK_DH
	004-005_HS#73_CONTENTS_ag_SR_DH_NK
	006-017_HS#73_TOP PROJECTS_NK_DH_AG
	018-019_HS#73_Objet3d'art_DH_NK_AG
	020-021_HS#73_LETTERS_NK_DH_be_AG
	022_HS#73_Ad HiPi
	023_HS#73_SectionIntro_Lens_AG_SR_DH_NK_AG
	024-033_HS#73_FEATURE_Robotics_NK_DH_AG
	034-035_HS#73_SUBS
	036_041_HS#73_HowIMade_NK_DH_be_AG
	042-043_HS#73_AD Retro Gaming Book
	044-051_HS#73_INTERVIEW_DH_NK_AG
	052_HS#73_AD_Handbook
	053_HS#73_SectionIntro_Forge_BE_SR_NK_DH_AG
	054-059_HS#73_TUTORIAL_Pico Modular_NK_DH_be_AG
	060-063_HS#73_TUTORIAL_Magpi
	064-065_HS#73_PriorityBoarding
	066-069_HS#73_TUTORIAL_Eco Resin_DH_NK_be_AG
	070-076_HS#73_TUTORIAL_Rotary Phone_DH_NK-be_AG
	077_HS#73_AD_Build_a_media_player
	078-083_HS#73_TUTORIAL_KiCad_DH_NK_AG
	084_HS#73_AD_MagPi
	085_HS#73_SectionIntro_FieldTest_SR_NK_DH_AG
	086-090_HS#73_BEST OF BREED_DH_NK_SR_AG
	091_HS#73_AD_BeginnersGuide
	092-093_HS#73_REVIEW_M7_NK_DH_be_AG
	094-095_HS#73_REVIEW_picovision_DH_NK_be_AG
	096-097_HS#73_CROWDFUNDING_NK_DH_BE_AG
	098_HS#73_NEXT_MONTH_DH_NK
	099_HS#73 IBC_DH
	100_HS#73_OBC

